

Long exercise: detector design tune for final states with low-p_T muons

M. Galanti

U. of Rochester

CMS Upgrade School DESY – 19/11/2014

Goal

Define a realistic detector layout and tune it in order to enhance the detection of low-p_T muons

- Test available choices
 - Play with them
 - Check detector performance
- Try different solutions
 - Describe and motivate them

Benchmark physics channel

- $B^0/B_s \rightarrow \mu^+\mu^-$ decays
 - Very rare process
 - Small signal and very high background
- Observation of B_s resonance already achieved with Run 1 data
- The real challenge will be the observation of the $B^0 \rightarrow \mu\mu$ process
 - Almost degenerate peaks: $m(B^{o}) \approx 5280 \text{ MeV}, \ m(B_{s}) \approx 5360 \text{ MeV} \quad (\Delta m \approx 80 \text{ MeV})$
 - B_s yield ~9 times higher than B^o
 - B_s peak is effectively the main background for the B^o search!
 - Separation of the two peaks will be paramount

Datasets

- Only signal datasets from MC production for the Technical Proposal will be used
 - BdToMuMu
 - BsToMuMu
- Only the generator information has been extracted from these samples and saved in HepMC format
 - These can be given to Delphes as input
- Samples have been produced with these cuts at the generator level
 - $p_T(\mu) > 2.5 \text{ GeV}$
 - $|\eta(\mu)| < 2.5$

Step 1: run Delphes and check output

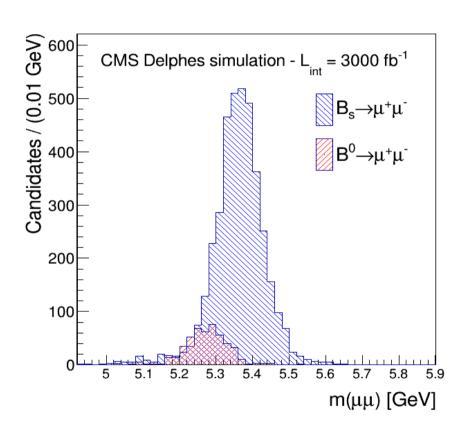
- Define a Delphes datacard with the help of TkLayout
- Run Delphes over the samples
- Check resolutions, yields, etc.
 - Do they match your design?
 - Are they good enough for the physics needs?

Step 2: evaluate the B_s/B^o performance

- Find the **di-µ invariant mass** spectra from the Delphes output
- Define which event selection criteria you want to apply
 - You will probably not have all the information available in the Delphes' root trees
 - Need to make **simplifying assumptions** in order to get some estimates
 - Justify them (Calculations? Published material? MC estimates?)
- Evaluate the results in terms of B⁰/B_s separation and signal yield
 - Is the resolution good everywhere? Can you improve it in the regions where it is worse (e.g. **in the endcaps**)?
 - Can you improve the acceptance and enhance the yield?

Some notes

- The exercise involves no pile-up to make it faster
 - The real detector will have to deal with considerable PU
 - Can you think of any significant effect of PU to your results?
- The results you will obtain are based on a fast simulation of the detector and its response
 - The reference results in FTR PAG studies are done with more refined techniques and sometimes use full simulation
 - They could be hard to directly compare with yours
- What you are asked to complete by Friday is just an exercise based on the performance of the tracker and muon detectors
 - In general, always keep in mind that the tools that you will use are simple and real life is complicated
 - Use your common sense to be sure that the results make sense to you

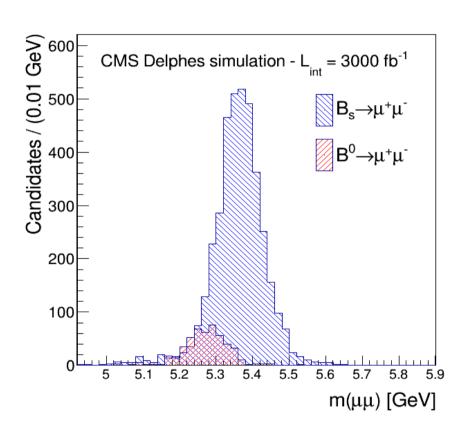

Example: plotting mass peaks

- Selection efficiency, normalizations, etc., scaled from Run-1 measurement
- Expected events
 - $B_s \rightarrow \mu \mu$: ~4000
 - $B^0 \rightarrow \mu \mu$: ~460
- Width of each resonance $\sigma = 60 \text{ MeV}$
- Simple calculation of the "resolving power" of CMS:

$$\sigma_{\text{tot}} = \sqrt{[\sigma^2(\mathbf{B}_s) + \sigma^2(\mathbf{B}^0)]}$$

$$= \sqrt{(2 \times \sigma^2)} \approx 85 \text{ MeV}$$

• Comparable with $\Delta(m)$!


Example: plotting mass peaks

- Selection efficiency, normalizations, etc., scaled from Run-1 measurement
- Expected events
 - $B_s \rightarrow \mu \mu$: ~4000
 - $B^0 \rightarrow \mu \mu$: ~460
- Width of each resonance $\sigma = 60 \text{ MeV}$
- Simple calculation of the "resolving power" of CMS:

$$\sigma_{\text{tot}} = \sqrt{[\sigma^2(\mathbf{B}_s) + \sigma^2(\mathbf{B}^0)]}$$

$$= \sqrt{(2 \times \sigma^2)} \approx 85 \text{ MeV}$$

• Comparable with $\Delta(m)$!

- Resolution shown above is at the limit for the discrimination between the two peaks
- Can you do better?

More notes

- Presenting the results is as important as extracting them
 - Allocate enough time to prepare a good talk
 - Be clear and concise
 - Show a refined analysis (e.g. including correct error propagation)
- Focus on the main point but be ready to defend also the details of your work
 - Include any external sources of information
 - Motivate all the choices you made

Delphes setup

```
git clone https://github.com/sethzenz/Delphes.git git checkout tags/31Jul2014 cd Delphes ./configure sed -i '/lFWCoreFWLite/ s/$/ -lGenVector/' Makefile make clean make
```

Tools

Input datasets (ASCII-HepMC files):

```
/nfs/dust/cms/group/cups2014/longexercises/BdToMuMu_14TeVPythia6/
/nfs/dust/cms/group/cups2014/longexercises/BsToMuMu_14TeVPythia6/
```

Example Delphes card:

/nfs/dust/cms/group/cups2014/longexercises/DESYCards/CMS_UpgradeSchool_BASE.tcl

Example analysis macro

```
Delphes/examples/Example1.C
Delphes/examples/Example1.cpp
```

- Signal samples are not very big (~50K events each) so you will not need to parallelize your jobs
 - To go even faster, run on small subsamples first
 - If you don't want Delphes to run everything, strip down the card to what you really need

Cuts and assumptions used in the example

- Muon $p_T > 4 \text{ GeV}$
- B candidate $p_T > 5$ GeV
- Full |η| range
- Signal efficiency degradation by ~35% with respect to the Run-1 analysis

Bibliography

1) Public material:

- Run 1 B->mumu results:
 - CMS Collaboration, "Measurement of the $B_s^o \rightarrow \mu^+\mu^-$ branching fraction and search for $B^o \rightarrow \mu^+\mu^-$ with the CMS experiment", Phys. Rev. Lett. **111** (2013) 101804; arXiv:1307.5025; CMS-BPH-13-004-003; CERN-PH-EP-2013-129.
 - CMS and LHCb Collaborations, "Combination of results on the rare decays $B_{(s)}^{0}$ → $\mu^{+}\mu^{-}$ from the CMS and LHCb experiments", arXiv:1411.4413; CMS-PAS-BPH-13-007; LHCb-CONF-2013-012; CERN-LHCb-CONF-2013-012
- HL-LHC, Run 2, etc., predictions:
 - CMS Collaboration, "CMS reach in B_s to dimuon and B to dimuon branching fractions for the new LHC runs", CMS-PAS-FTR-13-022
 - Approved slides with updated results: https://twiki.cern.ch/twiki/bin/viewauth/CMS/TpPublicResultsECFA (row "BPH"). It contains the most recent plots

2) CMS-private material:

- CMS Analysis Note with details of the latest analysis of the Phase-2 performance: http://cms.cern.ch/iCMS/jsp/openfile.jsp?tp=draft&files=AN2014_186_v4.pdf (updated)
- PAS under preparation with new analysis of HL-LHC performance: http://cms.cern.ch/iCMS/analysisadmin/versions?analysis=FTR-14-015 (not fully up to date)
- CMS Phase-2 Upgrade Technical Proposal, paragraph 10.5: "B Physics" (not updated)