MEASURING THE HIGGS-CHARM COUPLING WITH HEAVY QUARKONIA

Hee Sok Chung Argonne National Laboratory

Based on

Geoffrey T. Bodwin, Frank Petriello, Stoyan Stoynev, Mayda Velasco, PRD88, 053003 (2013) Geoffrey T. Bodwin, HSC, June-Haak Ee, Jungil Lee, Frank Petriello, arXiv:1407.6695 [hep-ph]

> Hamburg Workshop on Higgs Physics, 22-24 October 2014 DESY Hamburg

OUTLINE

- Higgs-charm coupling and $H o J/\psi + \gamma$
- Observability at LHC
- Summary

HIGGS COUPLING TO CHARM QUARK

- Higgs couplings to first- and second-generation quarks are terra incognita.
- Higgs-charm coupling $g_{Hc\bar{c}}$ can deviate significantly from SM in new physics theories.
- For example, Higgs-dependent Yukawa couplings can lead to large enhancements to the Higgsfermion coupling.
 Giudice and Lebedev, PLB665, 79 (2008)

HIGGS COUPLING TO CHARM QUARK

- $H \rightarrow \text{charmonium} + \gamma$ is sensitive to the Higgs-charm coupling through H decay into $c\bar{c}$.
- The vector charmonium J/ψ provides a clean signal through $J/\psi \to \ell^+ \ell^-$, which has been measured accurately
- $H \to J/\psi + \gamma$ would appear as a resonance above $H \to \ell^+ \ell^- \gamma$, where $\ell^+ \ell^-$ and γ are back-to-back in the H rest frame

$H \rightarrow J/\psi + \gamma$ process

- Direct process
 - H decays into $c \bar{c}$, which emits a photon and forms J/ψ
 - Amplitude proportional to $g_{Hc\bar{c}}$

H

- Indirect process
 - H decays into two photons, one of which decays into J/ψ
 - Process is dominated by top and W loops

$H \rightarrow J/\psi + \gamma$ **PROCESS**

- Direct process
 - Known for many years
 - Decay width too small to be observed at LHC
- Indirect process
 - Newly identified
 - An order of magnitude larger than the direct amplitude, giving large _H.
 enhancement
 - Interferes with the direct amplitude, gives sensitivity to $g_{Hc\bar{c}}$

Measuring Hcc with Heavy Quarkonia

 J/ψ

$H \rightarrow J/\psi + \gamma$ **PROCESS**

• If $g_{Hc\bar{c}}$ deviates from SM, $g_{Hc\bar{c}} = \kappa_c g_{Hc\bar{c}}^{\rm SM}$

 $\Gamma[H
ightarrow J/\psi + \gamma] = \left| \sqrt{\Gamma_{ ext{indirect}} - \kappa_c} \sqrt{\Gamma_{ ext{direct}}}
ight|$

- Indirect amplitude interferes destructively with the direct amplitude (we neglect a small phase)
- Depends on both the size and the phase of $g_{Hc\bar{c}}$
- In order to have sensitivity to $g_{Hc\bar{c}}$ it is essential to have small uncertainty in the indirect amplitude

DIRECT PROCESS

- Nonrelativistic QCD (NRQCD) is used to compute the direct amplitude with relativistic corrections of order $v^2 (v^2 \approx 0.25 \text{ for } J/\psi)$ Bodwin, Braaten, Lepage, PRD51, 1125 (1995)
- QCD I-loop correction is known and included Vysotsky, PLB97, 159 (1980)
- Nonperturbative matrix elements are extracted from the J/ψ leptonic decay rate Bodwin, HSC, Kang, Lee, Yu, PRD77, 094017 (2008)
- We use the light-cone method to compute leading logarithms of $\,m_{H}^2/m_c^2\,$

Lepage and Brodsky, PRD22, 2157 (1980)

DIRECT PROCESS

• We also calculate the direct amplitude using the light-cone method Hard-scattering kernel (perturbative)

$$i\mathcal{M} = f_V \int dx \, T(x)\phi(x)$$

- (nonperturbative) Light-cone distribution amplitude (nonperturbative) • f_V and $\phi(x)$ can be determined from the NRQCD matrix elements; T(x) is calculated using perturbative QCD
- Relativistic corrections come from f_V and $\phi(x)$
- This reproduces the NRQCD calculation with relativistic corrections at leading order in $1/m_H$

DIRECT PROCESS

- $\phi(x)$ is scale dependent
- The evolution equation for $\phi(x)$ can be solved formally in terms of the Gegenbauer polynomials
- We use this to resum leading logarithms at leading order in v^2 shifman and Vysotsky, NPB186, 475 (1981)
- At order v^2 , the Gegenbauer expansion leads to a diverging series
- Instead we solve the evolution equation perturbatively to order α_s^2
- The perturbation series converges rapidly.

Measuring Hcc with Heavy Quarkonia

Hee Sok Chung

INDIRECT PROCESS

- Indirect process can be computed from $H o \gamma \gamma^*$ followed by $\gamma^* o J/\psi$
- Because J/ψ is much lighter than H, $H \rightarrow \gamma \gamma^*$ can be approximated by $H \rightarrow \gamma \gamma$, which has been computed to high accuracy Dittmaier et al, arXiv:1101.0593 Dittmaier et al, arXiv:1201.3084
- $\gamma^* o J/\psi$ can be extracted from the J/ψ leptonic decay rate, rather than using NRQCD
- This approach effectively includes QCD radiative and relativistic corrections to all orders, and leads to greatly reduced uncertainties

ESTIMATED UNCERTAINTIES

- Direct process : I 3% uncertainty from
 - nonperturbative matrix elements
 - uncalculated corrections of order $lpha_s^2, lpha_s v^2, v^4$
 - Uncertainty is reduced by a factor of 2.7 by including relativistic corrections
- Indirect process : 2% uncertainty from
 - top quark and W boson masses, uncalculated higher-order corrections, J/ψ leptonic decay rate
 - Uncertainty is greatly reduced by using the measured leptonic decay rate
- 5% uncertainty in the SM decay rate

Measuring Hcc with Heavy Quarkonia

Hee Sok Chung

OBSERVABILITY AT LHC

- $\begin{array}{l} \cdot \ {\cal B}_{\rm SM} \times {\cal B}_{J/\psi \to \ell^+ \ell^-} = 1.66^{+0.09}_{-0.09} \times 10^{-7} \text{ is} \\ \text{comparable to the continuum background} \\ {\cal B}_{H \to \mu^+ \mu^- \gamma} = 2.3 \times 10^{-7} \\ {\cal B}_{H \to \mu^+ \mu^- \gamma} = 2.3 \times 10^{-7} \\ {}_{\text{Firan and Stroynowski, PRD76, 057301 (2007)}} \\ (m_{J/\psi} 0.05 \text{ GeV} < m_{\mu^+ \mu^-} < m_{J/\psi} + 0.05 \text{ GeV}) \end{array}$
- Combined number of events for ATLAS+CMS electron+muon final states for $\kappa_c = 1$:
 - 0.3 events at 8 TeV LHC
 - I 3 events at I 4 TeV high-luminosity LHC (157 events from the background)
- Expected acceptance/efficiency is about 50%

$H ightarrow \Upsilon(1S) + \gamma$

- We can do the same calculation for Υ $g_{Hb\bar{b}} = \kappa_b g_{Hb\bar{b}}^{SM}$ $\Gamma(H \to \Upsilon(1S) + \gamma) = |(3.33 \pm 0.03) - (3.49 \pm 0.15)\kappa_b|^2 \times 10^{-10} \text{ GeV}$ $\Gamma_{SM}(H \to \Upsilon(1S) + \gamma) = 2.56^{+7.30}_{-2.56} \times 10^{-12} \text{ GeV}$ $\mathcal{B}_{SM}(H \to \Upsilon(1S) + \gamma) = 6.11^{+17.41}_{-6.11} \times 10^{-10}$
- In the SM, direct and indirect amplitudes cancel in the 5% level
- Dramatic sensitivity to deviations from the SM

$H \to \Upsilon(nS) + \gamma$

• If $\kappa_b = -1$, we expect 19, 7, and 6 events at HL-LHC for $\Upsilon(1S), \Upsilon(2S)$, and $\Upsilon(3S)$ (52 events from the background $H \rightarrow \ell^+ \ell^- \gamma$ $m_{\Upsilon} - 0.05 \text{ GeV} < m_{\ell^+ \ell^-} < m_{\Upsilon} + 0.05 \text{ GeV}$)

SUMMARY

- Owing to interference in $H \to J/\psi + \gamma$, the magnitude and phase of the Higgs-charm coupling may be measurable at the LHC
- $H
 ightarrow \Upsilon(nS) + \gamma$ may help to determine the phase of the Higgs-bottom coupling

SUPPLEMENTARY

$H \to \Upsilon(nS) + \gamma$

 $egin{aligned} \Gamma(H o \Upsilon(1S) + \gamma) &= ig| (3.33 \pm 0.03) - (3.49 \pm 0.15) \kappa_b ig|^2 imes 10^{-10} \,\, ext{GeV}, \ \Gamma(H o \Upsilon(2S) + \gamma) &= ig| (2.18 \pm 0.03) - (2.48 \pm 0.11) \kappa_b ig|^2 imes 10^{-10} \,\, ext{GeV}, \ \Gamma(H o \Upsilon(3S) + \gamma) &= ig| (1.83 \pm 0.02) - (2.15 \pm 0.10) \kappa_b ig|^2 imes 10^{-10} \,\, ext{GeV}. \end{aligned}$

 $egin{aligned} &\Gamma_{
m SM}(H o \Upsilon(1S) + \gamma) = 2.56^{+7.30}_{-2.56} imes 10^{-12} \; {
m GeV}, \ &\Gamma_{
m SM}(H o \Upsilon(2S) + \gamma) = 8.46^{+7.79}_{-5.35} imes 10^{-12} \; {
m GeV}, \ &\Gamma_{
m SM}(H o \Upsilon(3S) + \gamma) = 10.25^{+7.33}_{-5.45} imes 10^{-12} \; {
m GeV}. \end{aligned}$

$$egin{split} \mathcal{B}_{
m SM}(H o \Upsilon(1S) + \gamma) &= 6.11^{+17.41}_{-6.11} imes 10^{-10}, \ \mathcal{B}_{
m SM}(H o \Upsilon(2S) + \gamma) &= 2.02^{+1.86}_{-1.28} imes 10^{-9}, \ \mathcal{B}_{
m SM}(H o \Upsilon(3S) + \gamma) &= 2.44^{+1.75}_{-1.30} imes 10^{-9}. \end{split}$$