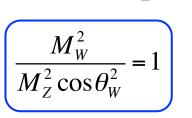
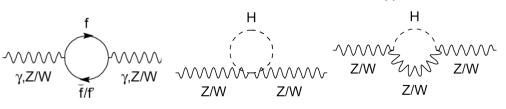

Roman Kogler (Uni Hamburg), on behalf of the Gfitter group (*) Hamburg Workshop on Higgs Physics, DESY Thursday October 23rd, 2014

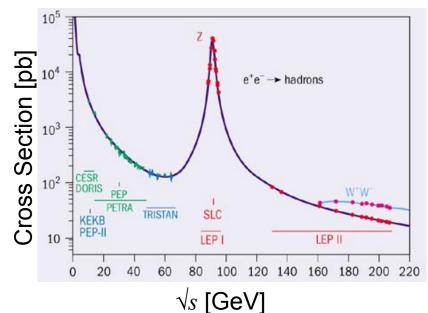
EPJC 74, 3046 (2014), arXiv:1407.3792

The global electroweak fit at NNLO Prospects for LHC and ILC



(*) M. Baak, J. Cuth, J. Haller, A. Höcker, R. Kogler, K. Mönig, M. Schott, J. Stelzer

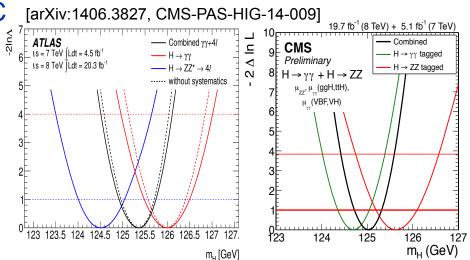

The predictive power of the SM


Universität Hamburg

- As the Z boson couples to all fermions, it is ideal to measure & study both the electroweak and strong interactions.
- Tree level relations for $Z \rightarrow f\bar{f}$
 - $i\bar{f}\gamma^{\mu}\left(g_{V,f}-g_{A,f}\gamma_{5}
 ight)fZ_{\mu}$ where z
- Prediction EWSB at tree-level:

- The impact of loop corrections
 - Absorbed into EW form factors: ρ, κ, Δr
 - Effective couplings at the Z-pole
 - Quadraticly dependent on m_t, logarithmic dependence on M_H

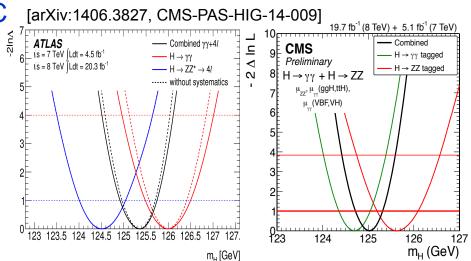
$$g_{V,f} = \sqrt{\rho_Z^f} \left(I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f \right)$$
$$g_{A,f} = \sqrt{\rho_Z^f} I_3^f$$
$$\sin^2 \theta_{\text{eff}}^f = \kappa_Z^f \sin^2 \theta_W$$
$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha(1 + \Delta r)}}{G_F M_Z^2}} \right)$$


Roman Kogler

The electroweak fit at NNLO – Status and Prospects

The SM fit with Gfitter, including the Higgs

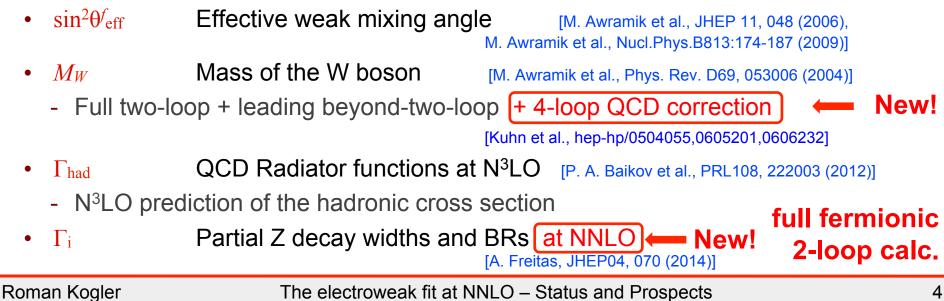
- Cross section x branching ratios, spin, parity, compatible with SM Higgs boson
- This talk: assume boson is SM Higgs.
- Use in EW fit: $M_{H} = 125.14 \pm 0.24 \text{ GeV}$
- Change between fully uncorrelated and fully correlated systematic uncertainties is minor: δM_H : 0.24 \rightarrow 0.32 GeV


UΗ

Der Forschung | der Lehre | der Bildung

EW observables precisely predicted at loop level → test consistency of SM!

The SM fit with Gfitter, including the Higgs


- Discovery of Higgs-like boson by LHC
 - Cross section x branching ratios, spin, parity, compatible with SM Higgs boson
 - This talk: assume boson is SM Higgs. •
 - Use in EW fit: $M_{H} = 125.14 \pm 0.24 \text{ GeV}$ •
 - Change between fully uncorrelated and fully correlated systematic uncertainties is minor: δM_{H} : 0.24 \rightarrow 0.32 GeV

UΗ

iversität Hamburg

- EW observables precisely predicted at loop level \rightarrow test consistency of SM!
- *New: all EWPOs*^(*) *now calculated at 2-loop level or better!*

Uncertainties from unknown H.O. terms

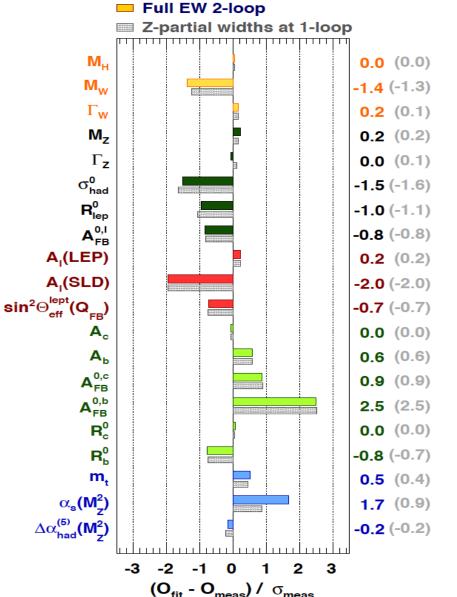
Universität Hamburg Der Forschung | der lehre | der Bildung

	Observable	Exp. error	Theo. error
Most important observables:	M_W	15 MeV	4 MeV
	$\sin^2 \theta_{\rm eff}^l$	$1.6 \cdot 10^{-4}$	$0.5 \cdot 10^{-4}$
	Γ_Z	2.3 MeV	0.5 MeV
Theory uncertainties accounted for in EW fit (w/ Gauss constraints):	$\sigma_{\text{had}}^0 = \sigma[e^+e^- \rightarrow Z \rightarrow \text{had.}]$	37 pb	6 pb
	$R_b^0 = \Gamma[Z \to b\overline{b}] / \Gamma[Z \to \text{had.}]$	$6.6 \cdot 10^{-4}$	$1.5 \cdot 10^{-4}$
	m_t	0.76 GeV	$\leq O(1) \text{ GeV}$
 Two nuisance pars in EW δM_W (4 MeV), δsin²θ¹_{eff} (4.7 	New in EW fit		

Newly included:

- Full fermionic 2-loop corrections of partial Z decay widths (A. Freitas)
 - 6 corresponding nuisance parameters. ($\delta \Gamma_z = 0.5 \text{ MeV}$)
- Γ_{had} QCD Adler functions at N³LO
 - 2 nuisance parameters.
- Top quark mass: conversion from measurement to MS-bar mass
 - Agnostic value used here: $\delta_{theo} m_t = 0.5 \text{ GeV}$. (more later)

Electroweak Fit – Experimental inputs


Universität Hamburg Der Forschung I der lehre I der Bildung

	M_H [GeV]
Latest experimental inputs:	M_W [GeV]
Z-pole observables: from LEP / SLC [ADLO+SLD, Phys. Rept. 427, 257 (2006)]	$\Gamma_W \ [\text{GeV}]$
M _W and Γ _W from LEP/Tevatron [arXiv:1204.0042, arXiv:1302.3415]	M_Z [GeV] Γ_Z [GeV]
m _{top} latest avg from Tevatron+LHC [arXiv:1403.4427]	$\sigma_{ m had}^0 \ [m nb] \ R_\ell^0$
m _c , m _b world averages (PDG) [PDG, J. Phys. G33,1 (2006)]	$egin{aligned} & A_{ ext{FB}}^{0,\ell} \ & A_\ell \ \ ^{(\star)} \end{aligned}$
• $\Delta \alpha_{had}^{(5)}(M_Z^2)$ including α_S dependency [Davier et al., EPJC 71, 1515 (2011)]	$\sin^2 \theta_{\text{eff}}^{\ell}(Q)$ A_c
M _H from LHC [arXiv:1406.3827, CMS-PAS-HIG-14-009]	$\begin{array}{c} A_{b} \\ A_{\mathrm{FB}}^{0,c} \end{array}$
7 (+10) free fit parameters:	$egin{array}{c} A_{ m FB}^{0,b} \ R_c^0 \end{array}$
$M_{\rm H}, M_{\rm Z}, \alpha_{\rm S}({\rm M_Z}^2), \Delta \alpha_{\rm had}{}^{(5)}({\rm M_Z}^2),$	R_b^{0}
m _t , m _c , m _b	$\overline{m}_c [\text{GeV}]$
10 theory nuisance parameters	\overline{m}_b [GeV]
 e.g. δM_W (4 MeV), δsin²θ^I_{eff} (4.7x10⁻⁵) 	$m_t \; [\text{GeV}]$

$M_H \; [\text{GeV}]^{(\circ)}$	125.14 ± 0.24	LHC
M_W [GeV]	80.385 ± 0.015	
Γ_W [GeV]	2.085 ± 0.042	Tevatron
M_Z [GeV]	91.1875 ± 0.0021	
Γ_Z [GeV]	2.4952 ± 0.0023	
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	LEP
R^0_ℓ	20.767 ± 0.025	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	
$A_\ell (\star)$	0.1499 ± 0.0018	SLC
$\sin^2\theta_{\rm eff}^\ell(Q_{\rm FB})$	0.2324 ± 0.0012	-
A_c	0.670 ± 0.027	
A_b	0.923 ± 0.020	SLC
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	·
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	LEP
R_c^0	0.1721 ± 0.0030	
R_b^0	0.21629 ± 0.00066	
$\overline{m}_c [\text{GeV}]$	$1.27^{+0.07}_{-0.11}$	
$\overline{m}_b [\text{GeV}]$	$4.20^{+0.17}_{-0.07}$	
$m_t ~[{ m GeV}]$	173.34 ± 0.76	Tevatron
$\Delta \alpha_{\rm had}^{(5)} (M_Z^2)^{(\dagger \triangle)}$	2757 ± 10	+ LHC

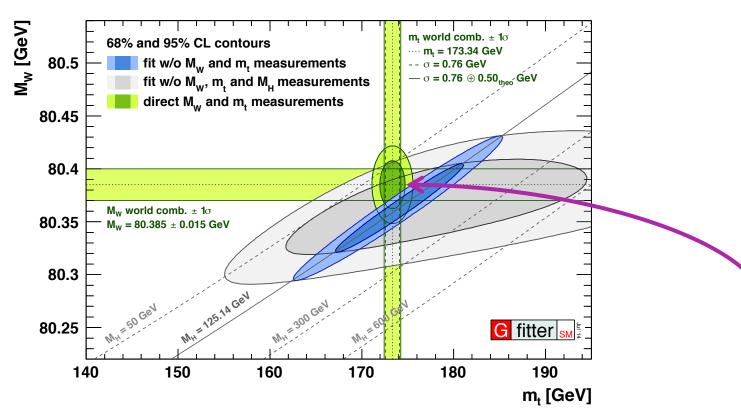
Electroweak Fit – SM Fit Results

- No individual value exceeds 3σ
- Largest deviations in b-sector: A^{0,b}_{FB} with 2.5σ
- \rightarrow largest contribution to χ^2
- Small pulls for M_H , M_Z , $\Delta \alpha_{had}^{(5)}(M_Z^2)$, \overline{m}_c , \overline{m}_b indicate that input accuracies exceed fit requirements
- Goodness of fit p-value:
 - $\chi^2_{min} = 17.8 \rightarrow \text{Prob}(\chi^2_{min}, 14) = 21\%$
 - Pseudo experiments: 21 ± 2 (theo) %
 - Small changes from switching between 1 and 2-loop calc. for partial Z widths and small M_W correction.
 - χ^2_{min} (1-loop Z width) = 18.0
 - χ^2_{min} (no M_W correction) = 17.4
 - χ^2_{min} (no extra theory errors) = 18.2

Indirect determination of W mass

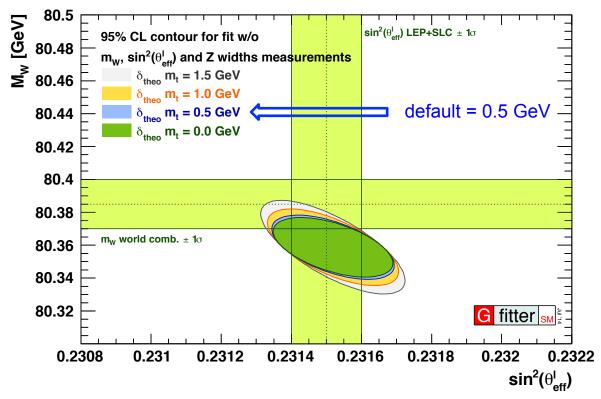
Universität Hamburg

 $\Delta \chi^2$ G fitter Scan of $\Delta \chi^2$ profile versus M_w **3**σ SM fit work of the second s 8 Also shown: SM fit with SM fit w/p M and M_H measurement minimal inputs: SM fit with minimal input 7 M_Z , G_F , $\Delta \alpha_{had}^{(5)}(M_Z)$, $\alpha_s(M_Z)$, M_w world average [arXiv:1204.0042] 6 M_{H} , and fermion masses Good consistency between **2**σ total fit and SM w/ minimal inputs 3 M_{H} measurement allows for 1σ precise constraint on M_w 32 80.34 80.35 80.36 80.37 80.38 80.39 80.4 80.41 80 33 Agreement at 1.4σ M_w [GeV] Fit result for indirect determination of M_W (full fit w/o M_W): $M_W = 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}}$ $\pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV},$ $80.358 \pm 0.008_{\text{tot}} \text{ GeV}$. Obtained with simple error More precise estimate of M_w than the direct measurements! propagation Uncertainty on world average measurement: 15 MeV


Roman Kogler

The electroweak fit at NNLO – Status and Prospects

State of the SM: W versus top mass


- Scan of M_W vs m_t, with the direct measurements excluded from the fit.
- Results from Higgs measurement significantly reduces allowed indirect parameter space → corners the SM!

Observed agreement demonstrates impressive consistency of the SM!

Theoretical uncertainty on m_{top}

• $\delta_{theo} m_t$: unc. on conversion of measured top mass to MS-bar mass

- Sources: ambiguity top mass definition, fragmentation process, pole→MS conv.
- Predictions for δ_{theo} m_t: between 0.25 0.9 GeV or greater. [Moch etal, aX:1405.4781, Mangano: TOP'12, Buckley etal, aX:1101.2599, Juste etal: aX:1310.0799]
- $\delta_{theo} m_t$ varied here between 0 and 1.5 GeV, in steps of 0.5 GeV.
- Better assessment of $\delta_{theo} m_t$ of relevance for the EW fit.

Roman Kogler

Prospects of EW fit tested for two scenarios:

- 1. LHC Phase-1 = before HL upgrade
- 2. ILC with GigaZ (*)

(*) GigaZ:

- Operation of ILC at lower energies like Z-pole or WW threshold.
 - Allows to perform precision measurements of EW sector of the SM.
- At Z-pole, several billion Z's can be studied within ~1-2 months.
 - Physics of LEP1 and SLC can be revisited with few days of data.

In following studies: central values of input measurements adjusted to M_H = 125 GeV.

• (Except where indicated.)

Future Linear Collider can improve precision of EWPO's tremendously.

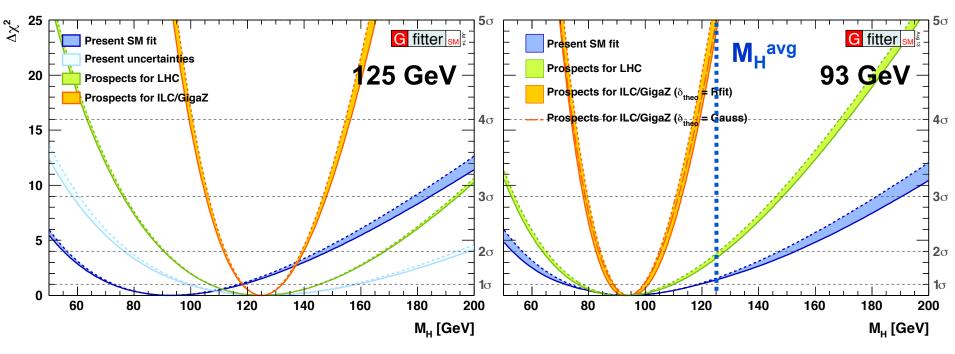
- WW threshold scan + kinematic reconstruction, to obtain M_W
 - From threshold scan: δM_W : 15 \rightarrow 5 MeV
- *ttbar threshold scan, to obtain m*t
 - Obtain m_t indirectly from production cross section: $\delta m_t: 0.8 \rightarrow 0.1 \mbox{ GeV}$
 - Dominated by conversion from threshold to MSbar mass.
- Z pole measurements
 - High statistics: 10^9 Z decays: $\delta R^{0}_{\text{lep}} : 2.5 \cdot 10^{-2} \rightarrow 4 \cdot 10^{-3}$
 - With polarized beams, uncertainty on $\delta A^{0,f}_{LR}$: $10^{-3} \rightarrow 10^{-4}$, which translates to $\delta \sin^2 \theta^{I}_{eff}$: $1.6 \cdot 10^{-4} \rightarrow 1.3 \cdot 10^{-5}$
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 1% precision.

ILC prospects: from ILC TDR (Vol-2).

LHC Phase-1 (300/fb)

- W mass measurement : δM_W : 15 \rightarrow 8 MeV
- Final top mass measurement $m_t : \delta m_t : 0.8 \rightarrow 0.6 \text{ GeV}$
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 3% precision.

LHC prospects: possibly optimistic scenario, but not impossible.

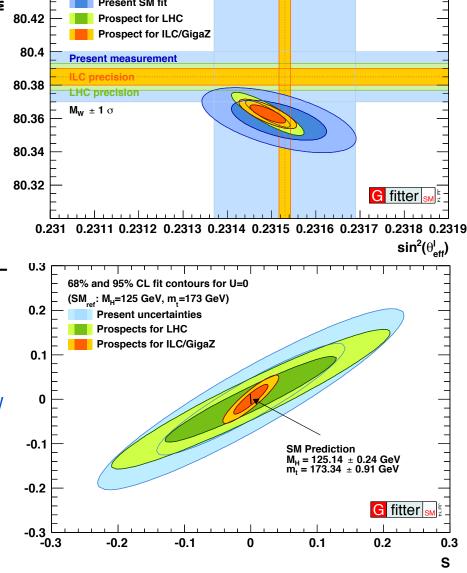

LHC Phase-1 (300/fb)

- *W* mass measurement : δM_W : 15 \rightarrow 8 MeV
- Final top mass measurement $m_t : \delta m_t : 0.8 \rightarrow 0.6 \text{ GeV}$
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 3% precision.

For both LHC and ILC:

- Low-energy data results to improve $\Delta \alpha_{had}$:
 - ISR-based (BABAR), KLOE-II, VEPP-2000 (at energy below cc resonance), and BESIII e⁺e⁻ cross-section measurements (around cc resonance).
 - Plus: improved α_s (precision meas. and calculations): $\Delta \alpha_{had}$: $10^{-4} \rightarrow 5 \cdot 10^{-5}$
- Assuming ~25% of today's theoretical uncertainties on M_W and $sin^2\theta_{eff}^I$
 - *Implies ambitions three-loop electroweak calculations!*
 - $\delta M_W (4 \rightarrow 1 \text{ MeV})$, $\delta \sin^2 \theta \mid_{eff} (4.7 \times 10^{-5} \rightarrow 1 \times 10^{-5})$ (from Snowmass report)
 - Partial Z decay widths at 3-loop level: factor 4 improvement
 - LHC: top quark mass theo uncertainty: $0.50 \rightarrow 0.25 \text{ GeV}$

Prospects of EW fit



- Indirect prediction M_H dominated by experimental uncertainties.
 - Present: $\sigma(M_{H}) = {}^{+31}_{-26} (exp) {}^{+10}_{-8}$ (theo) GeV
 - LHC: $\sigma(M_{\rm H}) = {}^{+20}_{-18} (exp) {}^{+3.9}_{-3.8} (theo) \, {\rm GeV}$
 - ILC: $\sigma(M_H) = {}^{+6.9}_{-6.6} (exp) {}^{+2.5}_{-2.3} (theo) \text{ GeV}$
- Logarithmic dependency on $M_H \rightarrow cannot \ compete \ with \ direct \ M_H \ meas.$
- If EWP-data central values unchanged, i.e. keep favoring low value of Higgs mass (93 GeV), ~5σ discrepancy with measured Higgs mass.

Prospects of EW fit

M_w [GeV] 80.46 $\mathbf{m}_{t} \pm \mathbf{1} \sigma$ 68% and 95% CL fit contour 68% and 95% CL fit contour $sin^2(\theta_{eff}^f) \pm 1 \sigma$ 80.44 w/o Mw and m, measurements w/o M_w and sin²(θ_{aff}^{f}) measurements Present SM fit Present SM fit 80.42 Prospect for LHC Prospect for LHC Prospect for ILC/GigaZ Prospect for ILC/GigaZ 80.4 Present measurement Present measurement ILC precision 80.38 LHC precision LHC precision $M_w \pm 1 \sigma$ M_w ±1σ 80.36 80.34 80.32 G fitter 175 160 165 170 180 185 m, [GeV] 0.3 Huge reduction of uncertainty on 68% and 95% CL fit contours for U=0 (SM___: M_H=125 GeV, m_=173 GeV)

- indirect determinations of m_t , m_W , sin² θ^{I}_{eff} , STU, by a factor of 3 or more.
- Assuming central values of m_t and M_W do not change, (at ILC) a deviation between the SM prediction and the direct measurements would be prominently visible.

80.46

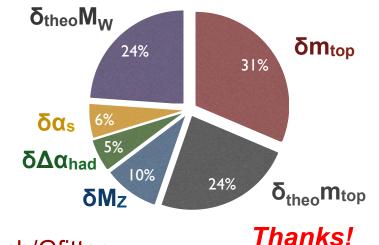
80.44

80.42

80.4

80.38

80.36

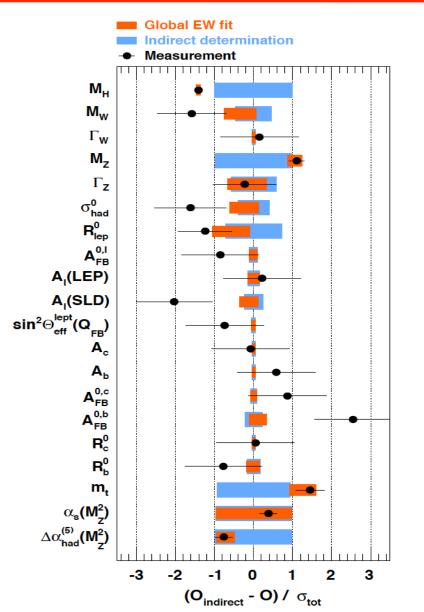

80.34

80.32

M_w [GeV]

Conclusion and Today's prospects

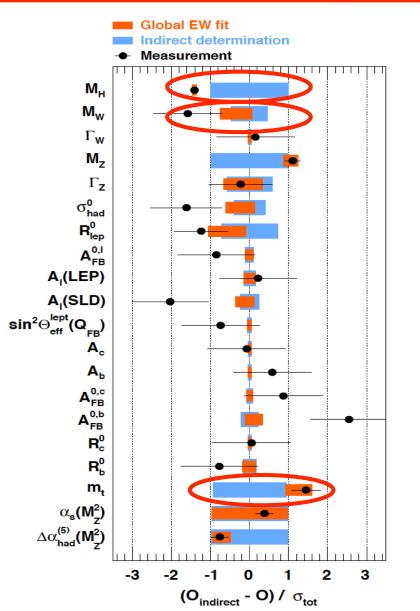
- Universität Hamburg
- Including M_H measurement, for first time SM is fully over-constrained!
 - M_H consistent at 1.3 σ with indirect prediction from EW fit.
 - p-Value of global electroweak fit of SM: 21% (pseudo-experiments)
- New: NNLO calculations and theory uncertainties for all relevant observables.
 - $\delta_{\text{theo}} m_{\text{t}}$ starting to become relevant.
- Knowledge of M_H dramatically improves SM prediction of key observables
 - M_W (20→8 MeV), sin²θ^I_{eff} (1.1x10⁻⁵→0.7x10⁻⁵), m_t (9.0→2.4 GeV)
- Improved accuracies set benchmark for new direct measurements!
- δM_W (indirect) = 8 MeV
- Large contributions to δM_w from top and unknown higher-order EW corrections
- δM_W (direct) = 15 MeV
- Including new data electroweak fits remain very interesting in the next years!
- Latest results always available at: <u>http://cern.ch/Gfitter</u>


A Generic Fitter Project for HEP Model Testing

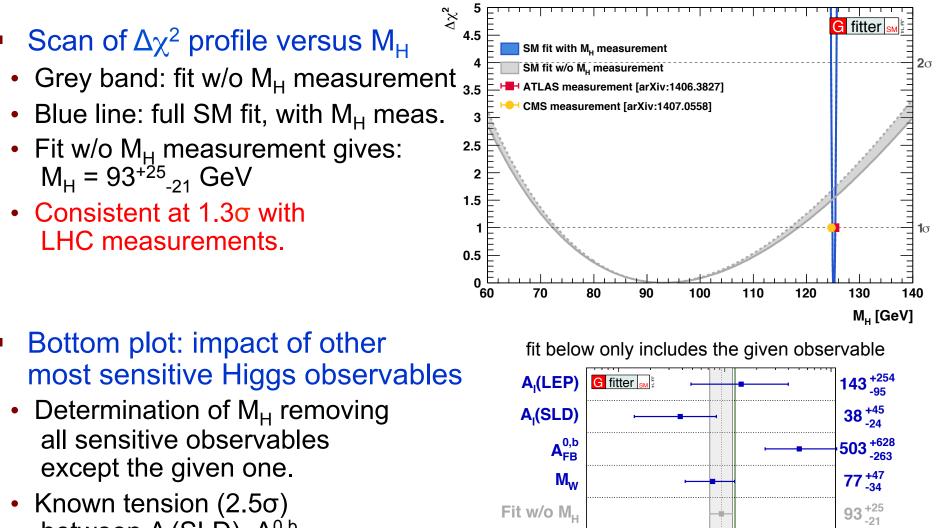
Backup

Electroweak Fit – SM Fit Results

Universität Hamburg


- Results drawn as *pull values:* → deviations to the
 indirect determinations,
 divided by *total error*.
- Total error: error of direct measurement plus error from indirect determination.
- Black: direct measurement (data)
- Orange: full fit
- Light-blue: fit excluding input from the row
- The prediction (light blue) is often more precise than the measurement!

Electroweak Fit – SM Fit Results


Universität Hamburg

- Results drawn as *pull values:* → deviations to the
 indirect determinations,
 divided by *total error*.
- Total error: error of direct measurement plus error from indirect determination.
- Black: direct measurement (data)
- Orange: full fit
- Light-blue: fit excluding input from the row
- The prediction (light blue) is often more precise than the measurement!

Higgs results of the EW fit

between $A_{I}(SLD)$, $A^{0,b}_{FB}$, and M_{W} clearly visible.

Roman Kogler

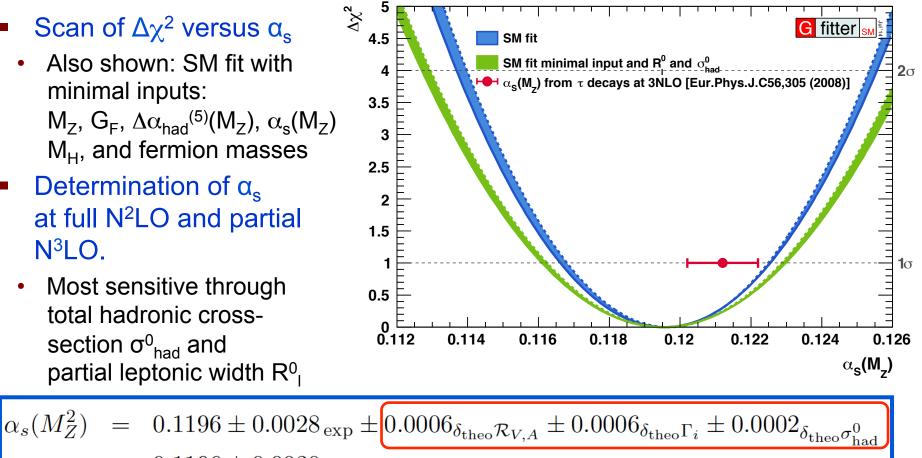
LHC average

10 20

6

 125.1 ± 0.2

10³


M_н [GeV]

10²2×10²

Prediction for $\alpha_s(M_7)$ from Z \rightarrow hadrons

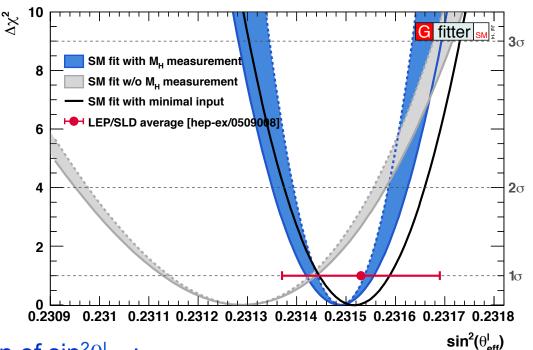
UH

- Scan of $\Delta \chi^2$ versus α_s
 - Also shown: SM fit with minimal inputs: M_7 , G_F , $\Delta \alpha_{had}^{(5)}(M_Z)$, $\alpha_s(M_Z)$ M_{H} , and fermion masses
- Determination of α_s at full N²LO and partial N³LO.
 - Most sensitive through total hadronic crosssection σ^{0}_{had} and partial leptonic width R⁰

$$= 0.1196 \pm 0.0030_{\rm tot} \; ,$$

Most affected by new theory uncertainties Before: $\delta_{theo} = 0.0001$

- In good agreement with value from τ decays, at N³LO, and with WA.
 - (Improvements in precision only expected with ILC/GigaZ. See later.)


Roman Kogler

The electroweak fit at NNLO – Status and Prospects

Indirect effective weak mixing angle

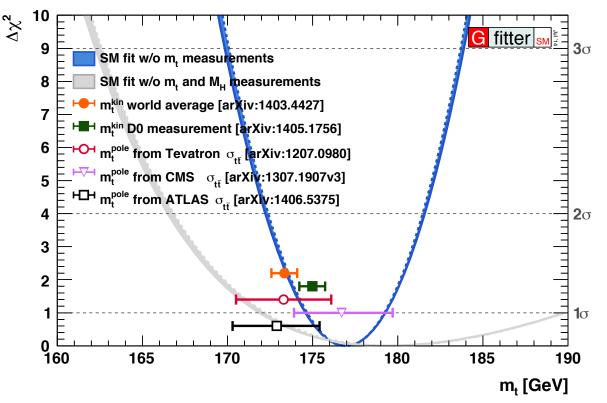
Universität Hamburg

- Right: scan of Δχ² profile versus sin²θ^l_{eff}
 - All sensitive measurements removed from the SM fit.
 - Also shown: SM fit with minimal inputs
- M_H measurement allows for very precise constraint on sin²θ^I_{eff}

• Fit result for indirect determination of $\sin^2 \theta_{eff}^{I}$:

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.231488 \pm 0.000024_{m_t} \pm 0.000016_{\delta_{\text{theo}}m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta \alpha_{\text{had}}} \\ \pm 0.000010_{\alpha_S} \pm 0.000001_{M_H} \pm 0.000047_{\delta_{\text{theo}}\sin^2 \theta_{\text{eff}}^{f}}, \\ = 0.23149 \pm 0.00007_{\text{tot}},$$

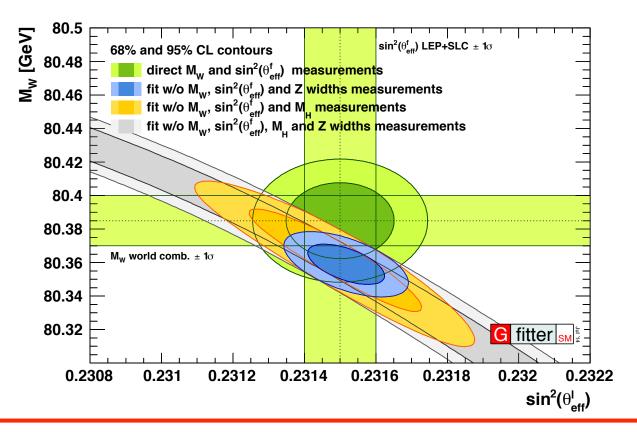
- More precise than direct determination (from LEP/SLD) !
 - Uncertainty on LEP/SLD average: 1.6x10⁻⁴


Roman Kogler

simple error

propagation

Indirect determination of top mass



- Shown: scan of $\Delta \chi^2$ profile versus m_t (without m_t measurement)
 - M_H measurement allows for significant better constraint of m_t
 - Indirect determination consistent with direct measurements
 - Remember: fully obtained from radiative corrections!
- Indirect result: m_t = 177.0^{+2.3}-2.4 GeV

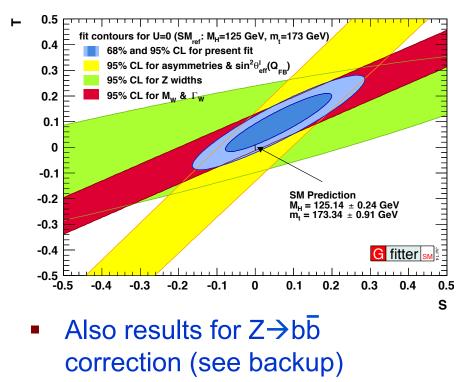
Tevatron+LHC: 173.34 ± 0.76 GeV new D0: 174.98 ± 0.76 GeV State of the SM: W mass versus $sin^2\theta_{eff}^{I}$

- Scan of M_W vs sin² θ^{I}_{eff} , with direct measurements excluded from the fit.
- Again, significant reduction allowed indirect parameter space from Higgs mass measurement.

- M_W and sin²θ^I_{eff} have become *the* sensitive probes of new physics!
 - Reason: both are 'tree-level' SM predictions.

Roman Kogler

The electroweak fit at NNLO – Status and Prospects


Constraints on BSM models

- If energy scale of NP is high, BSM physics could appear dominantly through vacuum polarization corrections.
- Described with STU parametrization [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]
- SM: M_H = 125 GeV, m_t = 173 GeV
 - This defines (S,T,U) = (0,0,0)
- S, T depend logarithmically on M_H
- Fit result (with U floating):

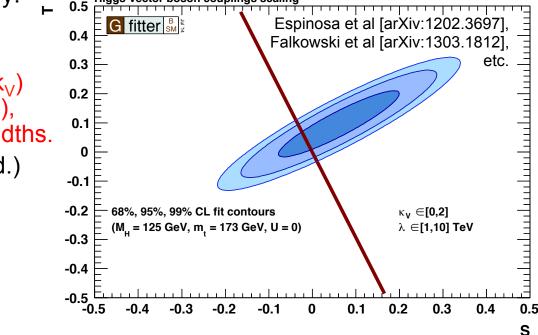
$S = 0.05 \pm 0.11$		S	Т	U
	S	1	+0.90	-0.59
$T = 0.09 \pm 0.13$	Т		1	-0.83
$U = 0.01 \pm 0.11$	U			1

• Stronger constraints with U=0.

- No indication for new physics.
- Use this to constrain 4th gen, Ex-Dim, T-C, Higgs couplings (in backup)

Universität Hamburg

 $\Lambda\Lambda\Lambda\Lambda\Lambda$


Z/W

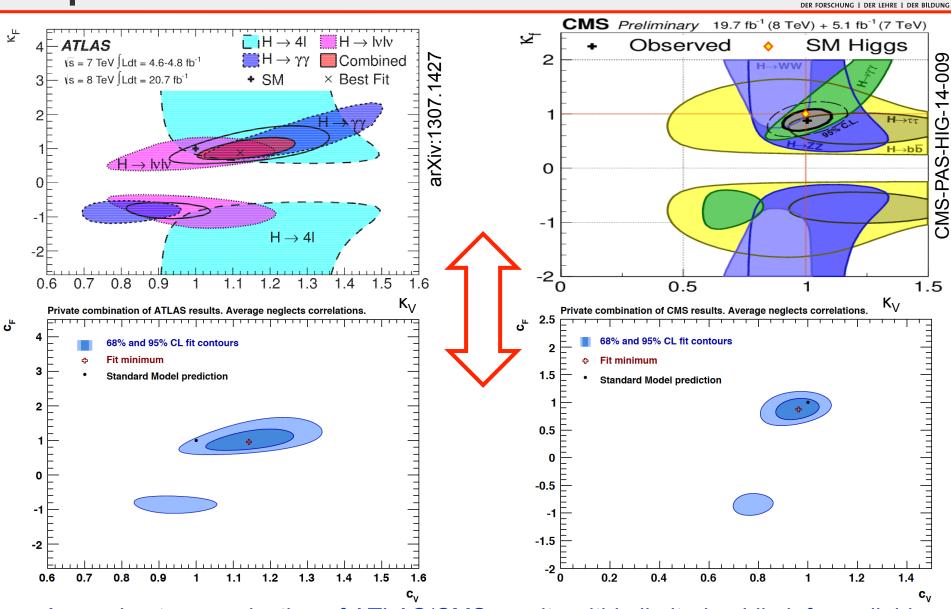
н

7/\/\

Modified Higgs couplings

- Study of potential deviations of Higgs couplings from SM.
- BSM modeled as extension of SM through effective Lagrangian.
 - Consider leading corrections only.
- Model considered here:
 - Scaling of Higgs-vector boson (κ_V) and Higgs-fermion couplings (κ_F), with no invisible/undetectable widths.
 - (Custodial symmetry is assumed.)
 - "Kappa parametrization"
- Main effect on EWPO due to modified Higgs coupling to gauge bosons (κ_V).

7/W

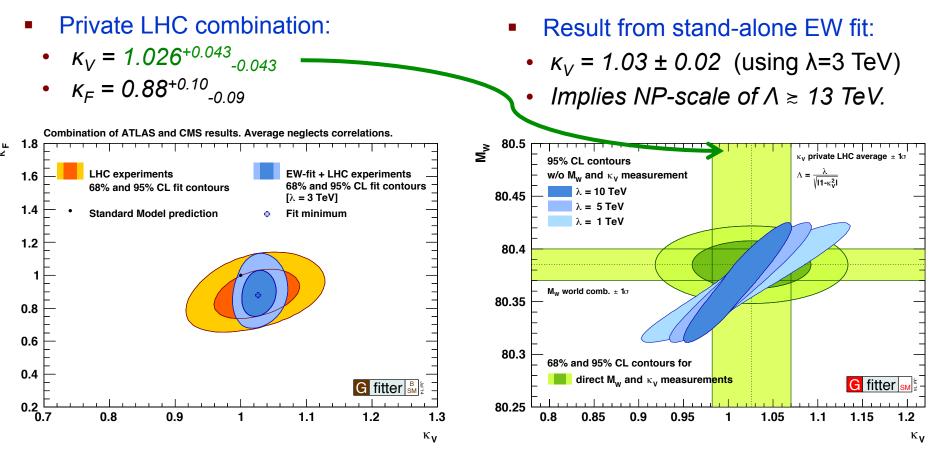

Higgs-vector boson couplings scaling

• Espinosa et al [arXiv:1202.3697], Falkowski et al [arXiv:1303.1812], etc.

$$S = \frac{1}{12\pi} (1 - \kappa_V^2) \log\left(\frac{\Lambda^2}{M_H^2}\right) , \quad T = -\frac{3}{16\pi c_W^2} (1 - \kappa_V^2) \log\left(\frac{\Lambda^2}{M_H^2}\right) , \quad \Lambda = \frac{\lambda}{\sqrt{|1 - \kappa_V^2|^2}} \log\left(\frac{\Lambda^2}{M_H^2}\right)$$

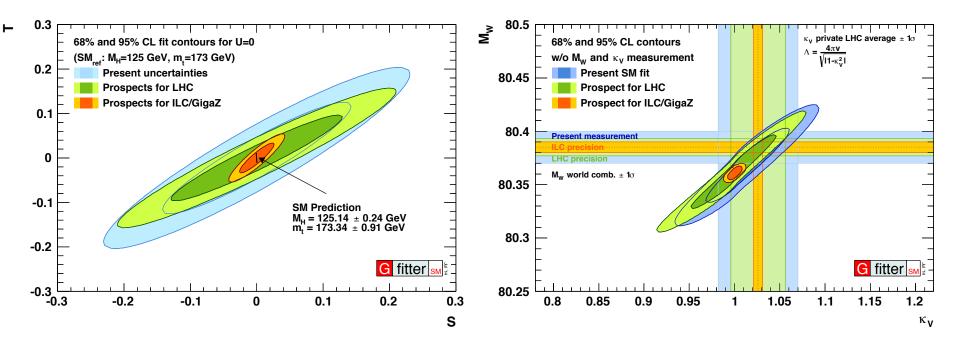
The electroweak fit at NNLO – Status and Prospects

Reproduction of ATLAS and CMS results


Approximate reproduction of ATLAS/CMS results within limited public-info available.

υн

Jniversität Hamburg


Higgs coupling results

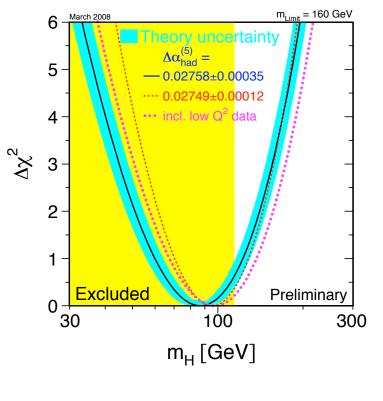
- Some dependency for κ_V in central value [1.02-1.04] and error [0.02-0.03] on cut-off scale λ [1-10 TeV].
- 1. EW fit sofar more precise result for κ_V than current LHC experiments.
- 2. EW fit has positive deviation of κ_V from 1.0.
 - (Many BSM models: $\kappa_V < 1$)

Roman Kogler

- For STU parameters, improvement of factor of >3 is possible at ILC.
- Again, at ILC a deviation between the SM predictions and direct measurements would be prominently visible.
- Competitive results between EW fit and Higgs coupling measurements!
 - (At level of 1%.)

Global EW fits: a long history

DER FORSCHUNG I DER LEHRE I DER BILDUNG


Top mass (GeV Huge amount of pioneering Electroweak fit w/o M_H (LEPEWWG) Electroweak fit with M_H (Gfitter group) work by many! 200 Measurement (Tevatron) Needed to understand importance of loop 190 corrections - Important observables (now) 0 180 0 known at least at two-loop 0 order, sometimes more. High-precision Standard 170 Model (SM) predictions and measurements required 160 - First from LEP/SLC, then Tevatron, now LHC. 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Year

- Top mass predictions from loop effects available since ~1990.
 - Official LEPEW fit since 1993.
- The EW fits have always been able to predict the top mass correctly!

Global EW fits: many fit codes

- EW fits performed by many groups in past and present.
 - D. Bardinet al. (ZFITTER), G. Passarino et al. (TOPAZ0), LEPEW WG (M. Grünewald, K. Mönig et al.), J. Erler (GAP), Bayesian fit (M. Ciuchini, L. Silvestrini et al.), etc ...
 - Important results obtained!
- Several groups pursuing global beyond-SM fits, especially SUSY.
- Global SM fits also used at lower energies [CKM-matrix].
- Fits of the different groups agree very well.
- Some differences in treatment of theory errors, which just start to matter.
 - E.g. theoretical and experimental errors added linearly (= conservative) or quadratically.
 - In following: theoretical errors treated as Gaussian (quadratic addition.)

32

Two prospects scenarios: LHC, ILC/GigaZ

1

Experimental input $[\pm 1\sigma]$

Uncertainty estimates used:

	Experimental input $[\pm 1\sigma_{exp}]$					
Parameter	Present	LHC	ILC/GigaZ			
M_H [GeV]	0.4	< 0.1	< 0.1			
M_W [MeV]	15	8	5			
M_Z [MeV]	2.1	2.1	2.1			
$m_t [{ m GeV}]$	0.8	0.6	0.1			
$\sin^2 \theta_{\rm eff}^{\ell} \ [10^{-5}]$	16	16	1.3			
$\Delta \alpha_{\rm had}^5(M_Z^2) \ [10^{-5}]$	10	4.7	4.7			
R_l^0 [10 ⁻³]	25	25	4			
$\alpha_s(M_Z^2) \ [10^{-4}]$	—	—	_			
$S _{U=0}$	_	_	_			
$T _{U=0}$	—	—	_			
$\kappa_V \ (\lambda = 3 \mathrm{TeV})$	0.05	0.03	0.01			

- ILC prospects from: ILC TDR (Vol-2).
- Theoretical uncertainty estimates from recent Snowmass report
- Central values of input measurements adjusted to M_H = 126 GeV.

Roman Kogler

The ElectroWeak fit of Standard Model and Beyond

Summary of indirect predictions

Universität Hamburg Der Forschung | Der Lehre | Der Bildung

	Exper	imental	input $[\pm 1\sigma_{exp}]$	Indirect determination $[\pm 1\sigma_{exp}, \pm 1\sigma_{theo}]$			
Parameter	Present	LHC	ILC/GigaZ	Present	LHC	$\mathrm{ILC}/\mathrm{GigaZ}$	
M_H [GeV]	0.4	< 0.1	< 0.1	$^{+31}_{-26}, ^{+10}_{-8}$	$^{+20}_{-18}, ^{+3.9}_{-3.2}$	$^{+6.9}_{-6.6}, {}^{+2.5}_{-2.3}$	
M_W [MeV]	15	8	5	6.0, 5.0 <	5.2, 1.8	1.9, 1.3	
M_Z [MeV]	2.1	2.1	2.1	$11,\ 4$	7.0, 1.4	2.6, 1.0	
$m_t [{ m GeV}]$	0.8	0.6	0.1	2.4, 0.6	$1.5, \ 0.2$	0.7, 0.2	
$\sin^2\theta_{\rm eff}^\ell$ [10 ⁻⁵]	16	16	1.3	$4.5, \ 4.9$	2.8, 1.1	2.0, 1.0	
$\Delta \alpha_{\rm had}^5(M_Z^2) \ [10^{-5}]$	10	4.7	4.7	$42, \ 13$	36, 6	$5.6, \ 3.0$	
R_l^0 [10 ⁻³]	25	25	4	_	_		
$\alpha_s(M_Z^2) \ [10^{-4}]$	—	_	_	$40, \ 10$	39, 7	6.4, 6.9	
$\overline{S _{U=0}}$		_	_	$0.094, \ 0.027$	0.086, 0.006	$0.017, \ 0.006$	
$T _{U=0}$	_	_	_	$0.083, \ 0.023$	$0.064, \ 0.005$	$0.022,\ 0.005$	
$\kappa_V \ (\lambda = 3 { m TeV})$	0.05	0.03	0.01	0.02	0.02	0.01	

• M_w and $sin^2 \theta_{eff}^{I}$ are (and will be) sensitive probes of new physics!

Roman Kogler

The ElectroWeak fit of Standard Model and Beyond

Impact of individual uncertainties

Universität Hamburg

• Breakdown of individual contributions to errors of M_W and $sin^2 \theta^{I}_{eff}$

					Experimental uncertainty source $[\pm 1\sigma]$				1σ]	
Parameter	δ_{meas}	$\delta_{\mathrm{fit}}^{\mathrm{tot}}$	$\delta_{\mathrm{fit}}^{\mathrm{theo}}$	$\delta_{\rm fit}^{\rm exp}$	δM_W	δM_Z	δm_t	$\delta \sin^2 \theta_{\text{eff}}^f$	$\delta\Delta\alpha_{\rm had}$	$\delta \alpha_S$
		Present uncertainties								
M_W [MeV]	15	7.8	5.0	6.0	_	2.5	4.3	5.1	1.6	2.5
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	16	6.6	4.9	4.5	3.7	1.2	2.0	_	3.4	1.2
	LHC prospects									
M_W [MeV]	8	5.5	1.8	5.2	_	2.5	3.5	4.8	0.8	2.6
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	16	3.0	1.1	2.8	2.5	1.1	1.4	_	1.5	0.9
$m_t ~[{ m GeV}]$	0.6	1.5	0.2	1.5	1.3	0.4	_	1.2	0.2	0.5
	ILC/GigaZ prospects									
M_W [MeV]	5	2.3	1.3	1.9	_	1.7	0.3	1.3	0.7	0.3
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	1.3	2.3	1.0	2.0	1.7	1.2	0.2	—	1.5	0.1
M_Z [MeV]	2.1	2.7	1.0	2.6	2.5	_	0.4	1.3	1.9	0.2

 $^{(\circ)}$ In units of 10^{-5} .

• M_W and $sin^2 \theta_{eff}^{I}$ are sensitive probes of new physics! For all scenarios.

• At ILC/GigaZ, precision of M_Z will become important again.

Roman Kogler

The electroweak fit at NNLO – Status and Prospects

Latest averages for M_w and m_{top}

Latest Tevatron result from: arXiv:1204.0042 ∧ ⁵⁰⁰ D0 Preliminary, 1 fb⁻¹ 🗕 Data Events/0.5 (Fast MC Fit Region $\chi^2/dof = 153/160$ 125 9₀ $105 \\ m_{ee}, GeV$ 75 80 85 90 95 100 Mass of the W Boson M_w [MeV] Measurement CDF-0/I 80432 ± 79 DØ-I 80478 ± 83 DØ-II (1.0 fb⁻¹) 80402 ± 43 CDF-1 (2.2 fb⁻¹) 80387 ± 19 DØ-I (4.3 fb⁻¹) 80369 ± 26 Tevatron Run-0/I/II 80387 ± 16 LEP-2 80376 ± 33 World Average 80385 ± 15 80200 80400 80600 M_w [MeV] March 2012

Tevatron+LHC m_{tron} combination - March 2014, $L_{int} = 3.5 \text{ fb}^{-1} - 8.7 \text{ fb}^{-1}$ ATLAS + CDF + CMS + D0 Preliminary CDF RunII, I+jets 172.85 ± 1.12 (0.52 ± 0.49 ± 0.86) L_{int} = 8.7 fb⁻¹ CDF RunII, di-lepton 170.28 ± 3.69 (1.95 ± 3.13) L_{int} = 5.6 fb⁻ CDF Runll, all jets 172.47 ± 2.01 (1.43 ± 0.95 ± 1.04) $CDF RunII, E_{T}^{miss}+jets$ 173.93 ± 1.85 (1.26 ± 1.05 ± 0.86) L_{int} = 8.7 fb⁻¹ D0 Runll, I+jets 174.94 ± 1.50 (0.83 ± 0.47 ± 1.16) L_{int} = 3.6 fb⁻¹ D0 Runll, di-lepton ■ 174.00 ± 2.79 (2.36 ± 0.55 ± 1.38) L_{int} = 5.3 fb⁻ ATLAS 2011, I+jets 172.31±1.55 (0.23±0.72±1.35) L_{int} = 4.7 fb⁻¹ ATLAS 2011, di-lepton 173.09 ± 1.63 (0.64 ± 1.50) L_{int} = 4.7 fb⁻¹ CMS 2011, I+jets $173.49 \pm 1.06 (0.27 \pm 0.33 \pm 0.97)$ L_{int} = 4.9 fb⁻¹ CMS 2011, di-lepton 172.50 ± 1.52 (0.43 ±1.46) L_{int} = 4.9 fb⁻ CMS 2011, all iets $173.49 \pm 1.41(0.69) \pm 1.23$ L_{int} = 3.5 fb⁻¹ World comb. 2014 $\frac{\chi^2 \, / \, \text{ndf} \, = 4.3/10}{\chi^2 \, \text{prob.} = 93\%}$ 173.34 ± 0.76 (0.27 ± 0.24 ± 0.67) $173.20 \pm 0.87 \, (0.51 \pm 0.36 \pm 0.61)$ Tevatron March 2013 (Run I+II) 0 V O 173.29 ± 0.95 (0.23 ± 0.26 ± 0.88) LHC September 2013 3.34 ± 0.76 GeV/c^2 total (stat. iJES syst.) 170 175 165 180 185 m_{top} [GeV] latest D0 arXiv:1405.1756: $174.98 \pm 0.76 \text{ GeV/}c^2$

Top mass WA from: arXiv:1403.4427

The electroweak fit at NNLO – Status and Prospects

Electroweak precision tests: Theory at NNL

- Radiative corrections are important!
 - E.g. consider tree-level EW unification relation:
 - This predicts: $M_W = (79.964 \pm 0.005) \text{ GeV}$
 - Experiment: $M_W = (80.385 \pm 0.015) \text{ GeV}$
- Without loop corrections: shift of 400 MeV, 27σ discrepancy!

- 1. Experimental precision (<1%), better than typical loop factor ($\alpha \approx 1/137$) \rightarrow Requires radiative corrections at 2-loop level.
- 2. Before Higgs discovery: uncertainty on M_H largest uncertainty in EW fit. \rightarrow *After:* inclusion of all relevant theoretical uncertainties.

```
(Part of focus of this talk ...)
```

 $M_W^2\Big|_{\text{tree-level}} = \frac{M_Z^2}{2} \cdot \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha}{G_F M_7^2}}\right)$