

Effective Lagrangian Approach

Ansgar Denner, University of Würzburg

Hamburg Workshop on Higgs Physics Preparing for Higgs Boson Studies with Future LHC Data

DESY Hamburg, October 22, 2014

- Introduction
- Frameworks for Higgs-coupling measurements
- Effective Field Theory approach
- Simplified Effective Field Theory approach
- Higher orders in Effective Field Theory

Status:

- discovery of new boson in 2012 spectacular success of LHC
- consistent with Higgs boson of Standard Model (SM) within present experimental sensitivities
- no new physics seen at LHC so far

goals of upcoming LHC run at $13\,{\rm TeV}$

- search for physics beyond the SM at higher energies and higher luminosity
- more precise investigations of SM processes
- precise studies of Higgs boson

key question: Is the new boson the Higgs boson of the Standard Model? \Rightarrow need to measure its interactions with SM particles, i.e. its couplings

Fundamental Higgs-boson couplings in the SM

Couplings of single Higgs boson to SM particles proportional to their masses

$$\mathbf{H} = \mathbf{i} e g_{\mu\nu} \left\{ \frac{M_{\mathbf{W}}}{s_{\mathbf{w}}}, \frac{M_{\mathbf{Z}}}{s_{\mathbf{w}} c_{\mathbf{w}}} \right\} \qquad \mathbf{H} = -\mathbf{i} e \frac{1}{2s_{\mathbf{w}}} \frac{m_f}{M_{\mathbf{W}}}$$
$$\mathbf{H} = -\mathbf{i} e \frac{1}{2s_{\mathbf{w}}} \frac{m_f}{M_{\mathbf{W}}}$$

important for Higgs production and decay at LHC

couplings involving two Higgs bosons

$$\begin{array}{c} \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{array} \begin{array}{c} \mathbf{W}, \mathbf{Z} \\ \mathbf{W}, \mathbf{Z} \end{array} = \mathbf{i} e^2 g_{\mu\nu} \frac{1}{2s_{\mathbf{w}}^2} \left\{ 1, \frac{1}{c_{\mathbf{w}}^2} \right\}$$

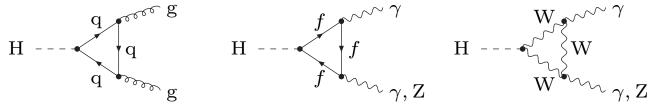
Higgs-boson self-couplings

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

$$\mathbf{H} = -\mathbf{i}e\frac{3}{2s_{w}}\frac{M_{\mathrm{H}}^{2}}{M_{W}} \qquad \qquad \mathbf{H} \qquad$$

couplings are uniquely fixed by SM parameters e, M_W , M_Z , M_H , m_f with $c_w = M_W/M_Z$, $s_w = \sqrt{1 - c_w^2}$



- very important for Higgs production and decay at LHC
- only particles in loop with mass $m \gtrsim M_{\rm H}$ contribute appreciably (t, W)
- contributions depend on elementary Higgs-boson couplings (mainly to HWW and Htt)
- couplings are uniquely fixed in SM

UNIVERSITÄT

WÜRZBURG

Within SM

WÜRZBURG

Julius-Maximilians-

- Higgs-boson couplings are not free parameters
 ⇒ cannot be varied independently
- Higgs-boson couplings cannot be fitted
- only compatibility of measured values with SM can be tested

any variation of Higgs couplings goes beyond SM !

ad-hoc variation \Rightarrow no consistent quantum field theory

- violation of gauge invariance \Rightarrow results become gauge-dependent
- loss of renormalisability \Rightarrow no consistent higher-order calculations
- perturbative unitarity is not guaranteed
- ⇒ measurement of Higgs couplings, in particular interpretation of possible deviations from SM, requires consistent framework beyond SM

Frameworks for Higgs-coupling measurements

Hamburg Workshop on Higgs Physics, October 22, 2014

Ansgar Denner (Würzburg)

Effective Lagrangian Approach - p.5

- Specific models with more free parameters
 - allow consistent fits of independent parameters (couplings)
 - allow consistent calculations of higher orders (if renormalisable)
 - analysis must be done model by model
 - model with good coverage of SM-like Higgs sector with free couplings: general Yukawa-aligned 2-Higgs-Doublet Model López-Val, Plehn, Rauch '13
- interim framework for Higgs-boson coupling analysis HXSWG '13 also called: κ framework, scalar-coupling-deviations framework
- form-factor approach

Julius-Maximilians-

WÜRZBURG

• Effective Field Theory approach

Basic assumptions

Julius-Maximilians-

UNIVFRSITÄT

WÜRZBURG

- zero-width approximation: $\sigma = \sigma(ii \rightarrow H)\Gamma(H \rightarrow ff)/\Gamma_H$
- tensor structure of Higgs couplings kept as in SM, $J^{\rm CP}=0^{++}$
- only SM coupling strengths are modified (rescaled)
- scale factors
 - ▶ for fundamental Higgs couplings: $\kappa_{\rm W}$, $\kappa_{\rm Z}$, κ_f (κ_t , κ_b , κ_τ)
 - ▶ for loop-induced couplings: κ_g , κ_γ , $\kappa_{\gamma Z}$

implementation:

- full SM corrections can be included by scaling (parts of) SM predictions \Rightarrow limit $\kappa = 1$ reproduces best SM prediction
- typically only subsets of couplings are scaled
- loop-induced decay widths are quadratic polynomials of fundamental couplings
- an invisible decay width can be included

Virtues:

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

- simple effective parametrisation of deviations from SM
- allows to fit coupling strengths
- easy to implement based on existing SM calculations \Rightarrow e.g. implementation in eHDECAY exists Contino et al. '14
- allows to include dominant perturbative corrections of SM (dominant QCD corrections factorise)
- allows consistency checks of SM

drawbacks:

- electroweak corrections can only be included effectively
- based on total rates, disregards information from angular distributions
- possible deviations have no direct interpretation with quantum field theory

Example: generalised Feynman rule for HVV vertex $(V_1V_2 = WW, ZZ, Z\gamma, \gamma\gamma)$ $V_1^{\mu}(p_1)$

$$\int_{V_{2}^{\mu}(p_{2})} = ia_{HV_{1}V_{2}}^{(1)} g^{\mu\nu} + ia_{HV_{1}V_{2}}^{(2)} \left[p_{1}^{\nu} p_{2}^{\mu} - (p_{1}p_{2})g^{\mu\nu} \right] + ia_{HV_{1}V_{2}}^{(3)} \epsilon^{\mu\nu\rho\sigma} p_{1,\rho} p_{2,\sigma}$$

- structure fixed by Lorentz invariance and transversality ($p_i^{\mu}V_{i,\mu}=0$)
- form factors $a_{HV_1V_2}^{(i)} = a_{HV_1V_2}^{(i)}(p_{\rm H}^2, p_1^2, p_2^2)$ general functions of $p_{\rm H}^2$, p_1^2 , p_2^2
- independent form factors for each vertex
- parity-conserving form factors $a_{HV_1V_2}^{(1)}$, $a_{HV_1V_2}^{(2)}$
- parity-violating form factor $a_{HV_1V_2}^{(3)}$
- SM values: $a_{HV_1V_2}^{(1)} = \text{const.}, \quad a_{HV_1V_2}^{(2,3)} = 0$
- interim framework: $a_{HV_1V_2}^{(1)} = \text{free const.}, \quad a_{HV_1V_2}^{(2,3)} \equiv 0$

Virtues:

• (almost) completely general and model independent

drawbacks:

- parametrisation of form factors necessary in practice
- gauge invariance violated \Rightarrow no consistent higher-order predictions
- no correlations between different processes

Virtues

- rather model independent
- respects symmetries of SM
- allows for consistent calculation of perturbative corrections
- comes with power counting
- allows for global fits of parameters (correlations, e.g. to LEP results)

drawbacks

- requires decoupling of New Physics (basic assumption!)
- based on specific low-energy Lagrangian (SM with Higgs doublet)
- depends on many free parameters

example: HVV vertex

 $a_{HV_1V_2}^{(1,2,3)} = \text{free const.}, \text{ correlated with constants in other vertices}$

Effective Field Theory

Starting point

- SM describes physics well up to $\sim 8\,{\rm TeV}$
- no new particle found so far

reasonable assumptions for general parametrisation of New Physics

- SM extension is a quantum field theory \Rightarrow unitarity, renormalisatbility
- gauge symmetry of SM $SU(3)_C \times SU(2)_L \times U(1)_Y$ holds
- SM recovered in low-energy limit
 ⇒ SM degrees of freedom should be incorporated
 including Higgs doublet
- new physics decouples if corresponding scale gets large

properties satisfied by Effective Field Theories Weinberg '79; Georgi '93

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_k \alpha_k \mathcal{O}_k$$

- \mathcal{L}_{SM} : SM Lagrangian (dimension ≤ 4)
- Λ : scale of new physics ($\Lambda \gg v$)
- *α_k*: dimensionless Wilson coefficients
- \$\mathcal{O}_k\$: \$d = 6\$ operators constructed from SM fields expected to generate leading effects of New Physics

remarks

Julius-Maximilians-

WÜRZBURG

- single d = 5 operator for one fermion generation violates L, generates Majorana-neutrino masses
- all d = 5 and d = 7 operators violate B and/or L
- $\left(\frac{1}{\Lambda^1}\alpha^{(d=5)}\mathcal{O}^{(d=5)}\right)$

Weinberg '79

Degrande et al. '12

- d = 8 operators suppressed by $1/\Lambda^4$
- validity of EFT assumes $E \ll \Lambda$

- Must consider all d = 6 operators that can be constructed from SM fields pioneering paper: Buchmüller, Wyler '86
- number of operators can be reduced by integration by parts and equations of motion
 minimal complete set of operators
- discrete symmetries allow further reduction of operators:
 - ▶ *B* and *L* conservation (excludes 5 operators for one generation)
 - flavour symmetries
 - CP symmetry
- assuming B and L conservation: number of independent effective d = 6 operators
 - ► for one generation: 59 (compared to 14 in SM)
 - ► for three generations: 2499 Alonso et al. '14
- no unique basis, different variants in use
 - HISZ basis: no fermionic operators Hagiwara, Ishihara, Szalapski, Zeppenfeld '93
 - ► GIMR basis: first minimal complete basis Grzadkowski, Iskrzyński, Misiak, Rosiek '10
 - SILH basis: complete Giudice, Grojean, Pomarol, Rattazzi '07;

Elias-Miro, Espinosa, Masso, Pomarol '13

Grzadkowski et al. '10

Φ^6 and $\Phi^4 D^2$	$\psi^2 \Phi^3$	X^3
$\mathcal{O}_{\Phi} = (\Phi^{\dagger} \Phi)^3$	$\mathcal{O}_{\mathrm{e}\Phi} = (\Phi^{\dagger}\Phi)(\bar{l}\Gamma_{\mathrm{e}}\mathrm{e}\Phi)$	$\mathcal{O}_G = f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$
$\mathcal{O}_{\Phi\Box} = (\Phi^{\dagger}\Phi)\Box(\Phi^{\dagger}\Phi)$	$\mathcal{O}_{\mathrm{u}\Phi} = (\Phi^{\dagger}\Phi)(\bar{q}\Gamma_{\mathrm{u}}\mathrm{u}\widetilde{\Phi})$	$\mathcal{O}_{\widetilde{G}} = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$
$\mathcal{O}_{\Phi D} = (\Phi^{\dagger} D^{\mu} \Phi)^* (\Phi^{\dagger} D_{\mu} \Phi)$	$\mathcal{O}_{\mathrm{d}\Phi} = (\Phi^{\dagger}\Phi)(\bar{q}\Gamma_{\mathrm{d}}\mathrm{d}\Phi)$	$\mathcal{O}_{\mathbf{W}} = \varepsilon^{IJK} \mathbf{W}^{I\nu}_{\mu} \mathbf{W}^{J\rho}_{\nu} \mathbf{W}^{K\mu}_{\rho}$
		$\mathcal{O}_{\widetilde{\mathbf{W}}} = \varepsilon^{IJK} \widetilde{\mathbf{W}}_{\mu}^{I\nu} \mathbf{W}_{\nu}^{J\rho} \mathbf{W}_{\rho}^{K\mu}$
$X^2 \Phi^2$	$\psi^2 X \Phi$	$\psi^2 \Phi^2 D$
$\mathcal{O}_{\Phi G} = (\Phi^{\dagger} \Phi) G^{A}_{\mu\nu} G^{A\mu\nu}$	$\mathcal{O}_{\mathbf{u}G} = (\bar{\mathbf{q}}\sigma^{\mu\nu}\frac{\lambda^{A}}{2}\Gamma_{\mathbf{u}}\mathbf{u}\widetilde{\Phi})G^{A}_{\mu\nu}$	$\mathcal{O}_{\Phi\mathbf{l}}^{(1)} = (\Phi^{\dagger}\mathbf{i} \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\mathbf{l}}\gamma^{\mu}\mathbf{l})$
$\mathcal{O}_{\Phi \widetilde{G}} = (\Phi^{\dagger} \Phi) \widetilde{G}^{A}_{\mu \nu} G^{A \mu \nu}$	$\mathcal{O}_{\mathrm{d}G} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^{A}}{2}\Gamma_{\mathrm{d}}\mathrm{d}\Phi)G^{A}_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{l}}^{(3)} = (\Phi^{\dagger} \mathbf{i} \overleftrightarrow{D}_{\mu}^{I} \Phi) (\overline{\mathbf{l}} \gamma^{\mu} \tau^{I} \mathbf{l})$
$\mathcal{O}_{\Phi W} = (\Phi^{\dagger} \Phi) W^{I}_{\mu\nu} W^{I\mu\nu}$	$\mathcal{O}_{\rm eW} = (\bar{\mathbf{l}}\sigma^{\mu\nu}\Gamma_{\rm e}\mathbf{e}\tau^{I}\Phi)\mathbf{W}^{I}_{\mu\nu}$	$\mathcal{O}_{\Phi e} = (\Phi^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi) (\bar{e} \gamma^{\mu} e)$
$\mathcal{O}_{\Phi \widetilde{\mathbf{W}}} = (\Phi^{\dagger} \Phi) \widetilde{\mathbf{W}}_{\mu \nu}^{I} \mathbf{W}^{I \mu \nu}$	$\mathcal{O}_{\mathrm{uW}} = (\bar{\mathbf{q}} \sigma^{\mu\nu} \Gamma_{\mathbf{u}} \mathbf{u} \tau^{I} \widetilde{\Phi}) \mathbf{W}^{I}_{\mu\nu}$	$\mathcal{O}^{(1)}_{\Phi \mathrm{q}} = (\Phi^\dagger \mathrm{i} \overleftrightarrow{D}_\mu \Phi) (\bar{\mathrm{q}} \gamma^\mu \mathrm{q})$
$\mathcal{O}_{\Phi B} = (\Phi^{\dagger} \Phi) B_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{\mathrm{dW}} = (\bar{\mathbf{q}} \sigma^{\mu\nu} \Gamma_{\mathrm{d}} \mathbf{d} \tau^{I} \Phi) \mathbf{W}_{\mu\nu}^{I}$	$\mathcal{O}^{(3)}_{\Phi \mathrm{q}} = (\Phi^{\dagger} \mathrm{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi) (\bar{\mathrm{q}} \gamma^{\mu} \tau^{I} \mathrm{q})$
$\mathcal{O}_{\Phi\widetilde{\mathbf{B}}} = (\Phi^{\dagger}\Phi)\widetilde{\mathbf{B}}_{\mu\nu}\mathbf{B}^{\mu\nu}$	$\mathcal{O}_{eB} = (\bar{l}\sigma^{\mu\nu}\Gamma_{e}e\Phi)B_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{u}} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{\mathbf{u}} \gamma^{\mu} \mathbf{u})$
$\mathcal{O}_{\Phi WB} = (\Phi^{\dagger} \tau^{I} \Phi) W^{I}_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{\mathrm{uB}} = (\bar{q}\sigma^{\mu\nu}\Gamma_{\mathrm{u}}\mathbf{u}\widetilde{\Phi})\mathbf{B}_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{d}} = (\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} \Phi) (\bar{\mathrm{d}} \gamma^{\mu} \mathrm{d})$
$\mathcal{O}_{\Phi \widetilde{\mathbf{W}} \mathbf{B}} = (\Phi^{\dagger} \tau^{I} \Phi) \widetilde{\mathbf{W}}^{I}_{\mu \nu} \mathbf{B}^{\mu \nu}$	$\mathcal{O}_{\rm dB} = (\bar{\rm q}\sigma^{\mu\nu}\Gamma_{\rm d}{\rm d}\Phi)B_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{ud}} = \mathrm{i}(\widetilde{\Phi}^{\dagger} D_{\mu} \Phi)(\bar{\mathrm{u}} \gamma^{\mu} \Gamma_{\mathrm{ud}} \mathrm{d})$

+ 25 four-fermion operators

Alternative basis for d = 6 operators

Φ^6 and $\Phi^4 D^2$	$\psi^2 \Phi^3$	X^3
$\mathcal{O}_6' = (\Phi^{\dagger} \Phi)^3$	$\mathcal{O}_{\mathrm{e}\Phi}' = (\Phi^{\dagger}\Phi)(\bar{l}\Gamma_{\mathrm{e}}\mathrm{e}\Phi)$	$\mathcal{O}_G' = f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$
$\mathcal{O}'_{\Phi} = \partial_{\mu} (\Phi^{\dagger} \Phi) \partial^{\mu} (\Phi^{\dagger} \Phi)$	$\mathcal{O}'_{\mathrm{u}\Phi} = (\Phi^\dagger \Phi) (\bar{q}\Gamma_{\mathrm{u}}\mathrm{u}\widetilde{\Phi})$	$\mathcal{O}_{\widetilde{G}}' = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$
$\mathcal{O}_{\rm T}' = (\Phi^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} \Phi) (\Phi^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} \Phi)$	$\mathcal{O}_{\mathrm{d}\Phi}' = (\Phi^{\dagger}\Phi)(\bar{\mathrm{q}}\Gamma_{d}d\Phi)$	$\mathcal{O}'_{\mathrm{W}} = \varepsilon^{IJK} \mathrm{W}^{I\nu}_{\mu} \mathrm{W}^{J\rho}_{\nu} \mathrm{W}^{K\mu}_{\rho}$
Giudice et al. '07, Contino et al. '13		$\mathcal{O}_{\widetilde{\mathbf{W}}}' = \varepsilon^{IJK} \widetilde{\mathbf{W}}_{\mu}^{I\nu} \mathbf{W}_{\nu}^{J\rho} \mathbf{W}_{\rho}^{K\mu}$
$X^2 \Phi^2$	$\psi^2 X \Phi$	$\psi^2 \Phi^2 D$
$\mathcal{O}_{\mathrm{D}W}' = \left(\Phi^{\dagger}\tau^{I}\mathrm{i}\overleftrightarrow{D^{\mu}}\Phi\right)(D^{\nu}\mathrm{W}_{\mu\nu})^{I}$	$\mathcal{O}'_{\mathbf{u}G} = (\bar{\mathbf{q}}\sigma^{\mu\nu}\frac{\lambda^{A}}{2}\Gamma_{\mathbf{u}}\mathbf{u}\widetilde{\Phi})G^{A}_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{l}}^{\prime(1)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{\mathbf{l}} \gamma^{\mu} \mathbf{l})$
$\mathcal{O}_{DB}^{\prime} = \left(\Phi^{\dagger} \mathbf{i} \overleftrightarrow{D^{\mu}} \Phi \right) \left(\partial^{\nu} \mathbf{B}_{\mu\nu} \right)$	$\mathcal{O}_{\mathrm{d}G}' = (\bar{\mathbf{q}}\sigma^{\mu\nu}\frac{\lambda^{A}}{2}\Gamma_{\mathrm{d}}\mathbf{d}\Phi)G^{A}_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{l}}^{\prime(3)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi) (\bar{\mathbf{l}} \gamma^{\mu} \tau^{I} \mathbf{l})$
$\mathcal{O}_{D\Phi W}' = i(D^{\mu}\Phi)^{\dagger}\tau^{I}(D^{\nu}\Phi)W_{\mu\nu}^{I}$	$\mathcal{O}_{\rm eW}' = (\bar{\mathbf{l}} \sigma^{\mu\nu} \Gamma_{\rm e} \mathbf{e} \tau^I \Phi) \mathbf{W}_{\mu\nu}^I$	$\mathcal{O}'_{\Phi \mathrm{e}} = (\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} \Phi) (\bar{\mathrm{e}} \gamma^{\mu} \mathrm{e})$
$\mathcal{O}_{D\Phi\widetilde{\mathbf{W}}}' = \mathbf{i}(D^{\mu}\Phi)^{\dagger}\tau^{I}(D^{\nu}\Phi)\widetilde{\mathbf{W}}_{\mu\nu}^{I}$	$\mathcal{O}'_{\rm uW} = (\bar{\mathbf{q}} \sigma^{\mu\nu} \Gamma_{\rm u} \mathbf{u} \tau^I \widetilde{\Phi}) \mathbf{W}^I_{\mu\nu}$	$\mathcal{O}_{\Phi\mathbf{q}}^{\prime(1)} = (\Phi^{\dagger}\mathbf{i}\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{\mathbf{q}}\gamma^{\mu}\mathbf{q})$
$\mathcal{O}'_{D\Phi \mathcal{B}} = \mathbf{i} (D^{\mu} \Phi)^{\dagger} (D^{\nu} \Phi) \mathbf{B}_{\mu\nu}$	$\mathcal{O}_{\mathrm{dW}}^{\prime} = (\bar{\mathbf{q}} \sigma^{\mu\nu} \Gamma_{\mathrm{d}} \mathbf{d} \tau^{I} \Phi) \mathbf{W}_{\mu\nu}^{I}$	$\mathcal{O}_{\Phi\mathbf{q}}^{\prime(3)} = (\Phi^{\dagger}\mathbf{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi)(\bar{\mathbf{q}}\gamma^{\mu}\tau^{I}\mathbf{q})$
$\mathcal{O}_{D\Phi\widetilde{\mathbf{B}}}' = \mathbf{i}(D^{\mu}\Phi)^{\dagger}(D^{\nu}\Phi)\widetilde{\mathbf{B}}_{\mu\nu}$	$\mathcal{O}_{\rm eB}' = (\bar{l}\sigma^{\mu\nu}\Gamma_{\rm e}e\Phi)B_{\mu\nu}$	$\mathcal{O}'_{\Phi \mathrm{u}} = (\Phi^{\dagger} \mathrm{i} \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{\mathrm{u}} \gamma^{\mu} \mathrm{u})$
$\mathcal{O}_{\Phi \mathbf{B}}' = (\Phi^{\dagger} \Phi) B_{\mu\nu} \mathbf{B}^{\mu\nu}$	$\mathcal{O}_{\mathrm{uB}}' = (\bar{q}\sigma^{\mu\nu}\Gamma_{\mathrm{u}}u\widetilde{\Phi})B_{\mu\nu}$	$\mathcal{O}'_{\Phi \mathrm{d}} = (\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} \Phi) (\bar{\mathrm{d}} \gamma^{\mu} \mathrm{d})$
$\mathcal{O}_{\Phi\widetilde{B}}' = (\Phi^{\dagger}\Phi)B_{\mu\nu}\widetilde{B}^{\mu\nu}$	$\mathcal{O}_{dB}' = (\bar{q}\sigma^{\mu\nu}\Gamma_{d}d\Phi)B_{\mu\nu}$	$\mathcal{O}'_{\Phi \mathrm{ud}} = \mathrm{i}(\widetilde{\Phi}^{\dagger} D_{\mu} \Phi)(\bar{\mathrm{u}}\gamma^{\mu}\Gamma_{\mathrm{ud}}\mathrm{d})$
$\mathcal{O}'_{\Phi G} = \Phi^{\dagger} \Phi G^A_{\mu\nu} G^{A\mu\nu}$		
$\mathcal{O}_{\Phi \widetilde{G}}' = \Phi^{\dagger} \Phi G^A_{\mu\nu} \widetilde{G}^{A\mu\nu}$		+(25-2) four-fermion operators

Operator relations:

$$\frac{g}{2}\mathcal{O}_{\mathrm{D}W}' - \frac{g'}{2}\mathcal{O}_{\mathrm{D}B}' + g'\mathcal{O}_{D\Phi\mathrm{B}}' - g\mathcal{O}_{D\Phi\mathrm{W}}' - \frac{g'^2}{4}\mathcal{O}_{\Phi\mathrm{B}}' = -\frac{g^2}{4}\mathcal{O}_{\Phi\mathrm{W}}$$

$$\frac{g'}{2}\mathcal{O}_{\mathrm{D}B}' - g'\mathcal{O}_{\mathrm{D}\Phi\mathrm{B}}' + \frac{{g'}^2}{4}\mathcal{O}_{\Phi\mathrm{B}}' = -\frac{gg'}{4}\mathcal{O}_{\Phi\mathrm{WB}}$$

and similar relations for $\mathcal{O}_{\Phi \widetilde{W}}$ and $\mathcal{O}_{\Phi \widetilde{W}B}$

identities to eliminate redundant 4-fermion operators ${\cal O}_{\Phi l}^{\prime(1)}$ and ${\cal O}_{\Phi l}^{\prime(3)}$

$$\mathcal{O}_{\Phi l}^{\prime(1)} - \frac{1}{3} \mathcal{O}_{\Phi q}^{\prime(1)} + 2\mathcal{O}_{\Phi e}^{\prime} - \frac{4}{3} \mathcal{O}_{\Phi u}^{\prime} + \frac{2}{3} \mathcal{O}_{\Phi d}^{\prime} = -\mathcal{O}_{T}^{\prime} + \frac{2}{g^{\prime}} \mathcal{O}_{DB}^{\prime}$$

$$2(\mathcal{O}_{u\Phi}^{\prime} + \mathcal{O}_{d\Phi}^{\prime} + \mathcal{O}_{e\Phi}^{\prime} + \text{h.c.}) + \mathcal{O}_{\Phi q}^{\prime(3)} + \mathcal{O}_{\Phi l}^{\prime(3)} = 3\mathcal{O}_{\Phi}^{\prime} - 4\lambda\mathcal{O}_{6}^{\prime}$$

$$+ 4m^{2} (\Phi^{\dagger}\Phi)^{2} - \frac{2}{g} \mathcal{O}_{DW}^{\prime}$$

\Rightarrow relations between Wilson coefficients

• weakly interacting theories:

Julius-Maximilians-

UNIVERSITÄ

WÜRZBURG

- operators involving field strengths result only from loops of heavy degrees of freedom
 - \Rightarrow suppressed by additional loop factor $1/16\pi^2$

 $\Rightarrow d = 8$ operators are equally important for $\frac{v^2}{\Lambda^2} \gtrsim \frac{1}{16\pi^2}$

or $\Lambda \lesssim 4\pi v pprox 3\,{
m TeV}$ Passarino '12

- other operators can be generated by tree diagrams
- strongly interacting theories:
 - \Rightarrow different hierarchies Giudice, Grojean, Pomarol, Rattazzi '07;

Elias-Miro, Espinosa, Masso, Pomarol '13

• operators involving extra covariant derivatives or gauge fields scale as $g^2 v^2 / \Lambda^2$, g = SM gauge coupling

other operators scale as g²_{*}v²/Λ², g_{*} = generic BSM gauge coupling ⇒ for g_{*} ~ 4π, latter more important

Feynman rules for HWW vertex

HWW coupling: $g = \frac{e}{s_w}$ $\frac{1}{\sqrt{2}G_{\mu}} = v^2 [1 + \mathcal{O}(\alpha_i)]$

$$W^{+}_{\mu}, p_{1} = \mathrm{i}g M_{\mathrm{W}} g_{\mu\nu} \left[1 + \frac{1}{\sqrt{2}G_{\mu}\Lambda^{2}} \left(\alpha_{\phi W} + \alpha_{\phi \Box} - \frac{1}{4}\alpha_{\phi D} \right) \right]$$

$$H \cdots \left[+ \mathrm{i} \frac{2g}{M_{\mathrm{W}}} \frac{1}{\sqrt{2}G_{\mu}\Lambda^{2}} \left[\alpha_{\phi W} (p_{2\mu}p_{1\nu} - p_{1}p_{2}g_{\mu\nu}) + \alpha_{\phi \widetilde{W}} \varepsilon_{\mu\nu\rho\sigma} p_{1}^{\rho} p_{2}^{\sigma} \right]$$

$$a_{HW^+W^-}^{(1)} = gM_{W} \left[1 + \frac{1}{\sqrt{2}G_{\mu}\Lambda^2} \left(\alpha_{\phi W} + \alpha_{\phi \Box} - \frac{1}{4}\alpha_{\phi D} \right) \right]$$
$$a_{HW^+W^-}^{(2)} = \frac{2g}{M_{W}} \frac{1}{\sqrt{2}G_{\mu}\Lambda^2} \alpha_{\phi W}, \qquad a_{HW^+W^-}^{(3)} = \frac{2g}{M_{W}} \frac{1}{\sqrt{2}G_{\mu}\Lambda^2} \alpha_{\phi \widetilde{W}}$$

- $\alpha_{\phi\Box}$ parametrises strength of *HWW* coupling
- $\alpha_{\phi D}$ parametrises difference of HWW and HZZ couplings
- $\alpha_{\phi W}$ parametrises strength of new CP-conserving tensor structure
- $\alpha_{\phi \widetilde{W}}$ parametrises strength of new CP-violating tensor structure

form factors expressed in terms of Wilson coefficients

Julius-Maximilians-

WÜRZBURG

HZZ coupling:

$$\alpha_{ZZ} = c_{\mathbf{w}}^2 \alpha_{\phi W} + s_{\mathbf{w}}^2 \alpha_{\phi B} + c_{\mathbf{w}} s_{\mathbf{w}} \alpha_{\phi WB}$$
$$\alpha_{Z\widetilde{Z}} = c_{\mathbf{w}}^2 \alpha_{\phi \widetilde{W}} + s_{\mathbf{w}}^2 \alpha_{\phi \widetilde{B}} + c_{\mathbf{w}} s_{\mathbf{w}} \alpha_{\phi W\widetilde{B}}$$

$$H \cdots \int_{Z_{\nu}, p_{2}}^{Z_{\mu}, p_{1}} = \mathrm{i}g \frac{M_{Z}}{c_{\mathrm{w}}} g_{\mu\nu} \left[1 + \frac{1}{\sqrt{2}G_{\mu}\Lambda^{2}} \left(\alpha_{\phi W} + \alpha_{\phi \Box} + \frac{1}{4}\alpha_{\phi D} \right) \right]$$

$$H \cdots \int_{Z_{\nu}, p_{2}}^{Z_{\mu}, p_{2}} + \mathrm{i}\frac{2g}{M_{\mathrm{W}}} \frac{1}{\sqrt{2}G_{\mu}\Lambda^{2}} \left[\alpha_{ZZ}(p_{2\mu}p_{1\nu} - p_{1}p_{2}g_{\mu\nu}) + \alpha_{Z\widetilde{Z}}\varepsilon_{\mu\nu\rho\sigma}p_{1}^{\rho}p_{2}^{\sigma} \right]$$

first term absent for HAZ and HAA vertex

$$a_{HZZ}^{(1)} = g \frac{M_Z}{c_w} \left[1 + \frac{1}{\sqrt{2}G_\mu \Lambda^2} \left(\alpha_{\phi W} + \alpha_{\phi \Box} + \frac{1}{4} \alpha_{\phi D} \right) \right], \qquad a_{HAZ}^{(1)} = 0, \qquad a_{HAA}^{(1)} = 0$$

$$a_{HV'V}^{(2)} = \frac{2g}{M_W} \frac{1}{\sqrt{2}G_\mu \Lambda^2} \alpha_{V'V}, \qquad a_{HV'V}^{(3)} = \frac{2g}{M_W} \frac{1}{\sqrt{2}G_\mu \Lambda^2} \alpha_{V'\tilde{V}}, \qquad V'V = ZZ, AZ, AA$$

$$\alpha_{AA} = s_w^2 \alpha_{\phi W} + c_w^2 \alpha_{\phi B} - c_w s_w \alpha_{\phi WB}$$

$$\alpha_{AZ} = s_w c_w (\alpha_{\phi W} - \alpha_{\phi B}) + \frac{(c_w^2 - s_w^2)}{2} \alpha_{\phi WB}$$

different couplings parametrised by the same Wilson coefficients \Rightarrow correlations

Input $M_{\rm Z}$, $M_{\rm W}$, $G_{\mu} \Rightarrow$

$$g = 2M_{\rm W}\sqrt{\sqrt{2}G_{\mu}} \left(1 - \frac{1}{\sqrt{2}G_{\mu}\Lambda^2} \left(\alpha_{\phi W} + \alpha_{\phi \mu}^{(3)}\right)\right)$$

 $\Rightarrow \alpha_{\phi W}$ in rescaled SM coupling replaced by $-\alpha_{\phi \mu}^{(3)}$ (effective operator contributing to μ decay)

$$a_{HW^+W^-}^{(1)} = gM_{W} \left[1 + \frac{1}{\sqrt{2}G_{\mu}\Lambda^2} \left(\alpha_{\phi W} + \alpha_{\phi\Box} - \frac{1}{4}\alpha_{\phi D} \right) \right]$$

 $\rightarrow a_{HW^+W^-}^{(1)} = 2M_{W}\sqrt{\sqrt{2}G_{\mu}} \left[1 + \frac{1}{\sqrt{2}G_{\mu}\Lambda^2} \left(-\alpha_{\phi\mu}^{(3)} + \alpha_{\phi\Box} - \frac{1}{4}\alpha_{\phi D} \right) \right]$

expression for g depends on input parameter set and EFT basis!

Simplified Effective Field Theory

- Optimal approach: global fit of all Wilson coefficients using all available experimental observables
- to many independent parameters
 need simplification or staged fitting procedure
- large reduction by flavour symmetries, but possibly not enough

Simplified EFT approach Elias-Miro, Espinosa, Masso, Pomarol '13, Pomarol, Riva '14

- exploit constraints from precision experiments
- if LHC cannot probe a Wilson coefficient beyond existing bounds
 ⇒ omit it from EFT Lagrangian
 need basis independent definition consistent with equations of motion!
 Trott '14

Elias-Miro, Espinosa, Masso, Pomarol '13, Pomarol, Riva '14

Assumptions

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

- minimal flavour violation \Rightarrow fermionic dipole operators \propto Yukawa couplings, i.e. negligible (top treated separately)
- neglect CP-odd operators (no interference with SM contributions ⇒ appear only quadratically)
- consider only operators that can affect Higgs physics at tree level
- \Rightarrow 18 out of 59 operators left
 - 7 Wilson coefficients constrained by EW precision measurements (0.1%)
 - 3 Wilson coefficients constrained by anomalous gauge couplings (1%)
- \Rightarrow 8 Wilson coefficients can be independently constraint by Higgs physics

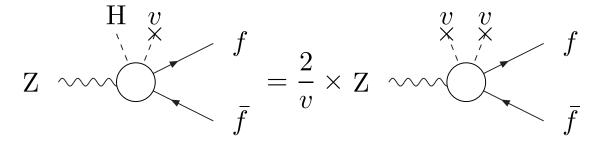
Elias-Miro, Espinosa, Pomarol, Masso '13

Julius-Maximilians-

WÜRZBURG

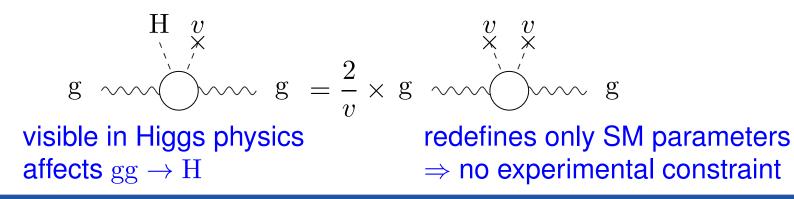
SM Higgs is excitation around vacuum: $\Phi = (v + H)/\sqrt{2}$ \Rightarrow BSM effects in Higgs physics tested already in other experiments?

example 1: d = 6 operator $\mathcal{O}_{\Phi f}^{(1)} = (\Phi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{f} \gamma^{\mu} f)$



 \Rightarrow effects in H \rightarrow Z $f\bar{f}$ related to Z \rightarrow $f\bar{f}$ \Rightarrow constrained by LEP data

example 2: $\mathcal{O}_{\Phi G} = (\Phi^{\dagger} \Phi) G^{A}_{\mu\nu} G^{A\mu\nu}$



Operators affecting exclusively Higgs physics

Pomarol, Riva '13; Elias-Miró, Espinosa, Masso, Pomarol '13; Gupta, Pomarol, Riva '14;

How many Wilson coefficients cannot be tested outside Higgs physics? answer: as many as parameters in the SM! others constrained by experiments without Higgs

8 relevant parameters for Higgs physics

g_s	$(\Phi^{\dagger}\Phi)G^{A}_{\mu u}G^{A\mu u}$	$\Rightarrow \mathrm{ggH}$ coupling
g_1	$(\Phi^\dagger \Phi) B_{\mu u} B^{\mu u}$	$\Rightarrow \mathrm{H}\gamma\gamma$ coupling
g_2	$(\Phi^{\dagger}\Phi)W^{I}_{\mu u}W^{I\mu u}$	$\Rightarrow \mathrm{H}\gamma\mathrm{Z}$ coupling
$M_{\rm W}$	$(\Phi^\dagger D^\mu \Phi)^* (\Phi^\dagger D_\mu \Phi)$	\Rightarrow HVV coupling
$M_{\rm H}$	$(\Phi^\dagger\Phi)^3$	$\Rightarrow \mathrm{H}^3$ coupling
m_f	$(\Phi^\dagger \Phi) (\bar{f}\Gamma_{_f} f \Phi)$	$\Rightarrow \mathrm{H} f f$ coupling

constraints from LHC

constrained at ‰ level constrained at ‰ level to be constrained constrained to be constrained constrained

 $f={\rm t,b},\tau$

Julius-Maximilians-

UNIVERSITÄ

WÜRZBURG

(N.B.: bounds are for $\Lambda = M_{\rm W}$, e.g. for $\kappa_{\rm gg} \frac{M_{\rm W}^2}{\Lambda^2}$)

Higher orders in Effective Field Theory

Effective Field Theory allows consistent calculation of higher orders

- power counting \Rightarrow consistent separation of orders simultaneous expansion in $\alpha/4\pi$ and v^2/Λ^2
- Wilson coefficients need renormalisation \Rightarrow running
- insertion of multiple higher-dimensional operators in loops requires counterterms of even higher dimension (power counting)
 - insertion of one d=6 operators in a loop requires only counterterms from d=6 operators ($\propto 1/\Lambda^2$)
 - insertion of two d=6 operators in a loop requires counterterms from d=8 operators ($\propto 1/\Lambda^4$)

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

- Effects of d = 6 operators expected to be small
- \Rightarrow consider only leading contributions
 - = terms linear in d = 6 Wilson coefficients

assumption: suppression of d = 6 operators \leq loop suppression $\left(\frac{v^2}{\Lambda^2} \lesssim \frac{g^2}{16\pi^2}\right)$

tree-level-induced processes:

recipe for matrix element: $\mathcal{M} = \mathcal{M}_0^{SM} + \mathcal{M}_1^{SM} + \mathcal{M}_0^{d=6}$ recipe for cross section: $\sigma \propto |\mathcal{M}_0^{SM}|^2 + 2 \operatorname{Re} (\mathcal{M}_1^{SM} + \mathcal{M}_0^{d=6}) \mathcal{M}_0^{SM,*}$

- SM contributions in LO and NLO (and NNLO)
- LO contributions involving one d = 6 operator
- terms "SM-NLO×(d = 6)" and " $(d = 6)^2$ " neglected \Rightarrow linear polynomial in α_i
- (parts of) QCD corrections can be factorised and multiplied with EW corrections and contributions of d = 6 operators

implemented in different codes: eHDECAY, HAWK, VBFNLO MADGRAPH5_AMC@NLO

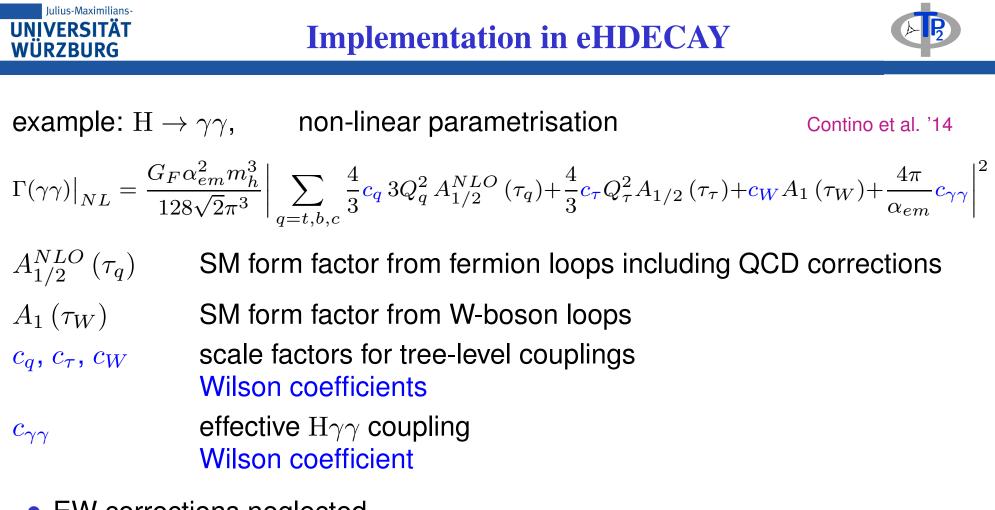
loop-induced processes:

recipe for matrix element: $\mathcal{M} = \mathcal{M}_1^{SM} + \mathcal{M}_2^{SM} + \mathcal{M}_0^{d=6} + \mathcal{M}_1^{d=6}$

- SM contributions in LO (1-loop) and NLO (2-loop) (and NNLO (3-loop))
- tree-level contributions involving one d = 6 operator typically suppressed (loop-generated), e.g. in $H \rightarrow gg$, $H \rightarrow \gamma \gamma$
- 1-loop contributions involving one d = 6 operator (inserted in loop) \Rightarrow need renormalisation of d = 6 operators
- d = 8 operators neglible, for $\frac{v^2}{\Lambda^2} \ll \frac{g^2}{16\pi^2}$, or loop-generated
- large QCD corrections can be factorized

Passarino '12 defines admissible d=6 operators in loop calculations

- do not alter UV power counting of SM diagrams or
- result in multiplicative modification of finite sets of SM diagrams
- \Rightarrow no renormalisation of d=6 operators needed, NLO corrections factorize only subset of d = 6 operators allowed!



- EW corrections neglected
- contributions from angular-dependent effective couplings missing
- corresponds to interim framework
- $\Gamma(\gamma\gamma)|_{NL}$ quadratic polynomial in Wilson coefficients

example:
$$H \to \gamma \gamma$$
, SILH parametrisation

$$\Gamma(\gamma \gamma)|_{SILH} = \frac{G_F \alpha_{em}^2 m_h^3}{128\sqrt{2}\pi^3} \left\{ |A_{NLO}^{SM}(\gamma \gamma)|^2 + 2 \operatorname{Re} \left(A_{LO}^{SM*}(\gamma \gamma) A_{ew}^{SM}(\gamma \gamma) \right) + 2 \operatorname{Re} \left[A_{NLO}^{SM*}(\gamma \gamma) \left(\Delta A(\gamma \gamma) + \frac{32\pi \sin^2 \theta_W \bar{c} \gamma}{\alpha_{em}} \right) \right] \right\}$$

SM amplitude (LO, NLO QCD)

$$A_X^{SM}(\gamma\gamma) = \sum_{q=t,b,c} \frac{4}{3} 3Q_q^2 A_{1/2}^X(\tau_q) + \frac{4}{3}Q_\tau^2 A_{1/2}(\tau_\tau) + A_1(\tau_W) , \qquad X = LO, NLO$$

EW corrections in SM: $A_{ew}^{SM}(\gamma\gamma)$

EFT contribution (Wilson coefficients: \bar{c}_H , \bar{c}_q , \bar{c}_{τ} , \bar{c}_W)

$$\begin{split} \Delta A(\gamma\gamma) &= -\sum_{q=t,b,c} \frac{4}{3} \left(\frac{\bar{c}_H}{2} + \bar{c}_q \right) 3Q_q^2 A_{1/2}^{NLO} \left(\tau_q \right) - \left(\frac{\bar{c}_H}{2} + \bar{c}_\tau \right) \frac{4}{3} Q_\tau^2 A_{1/2} \left(\tau_\tau \right) \\ &- \left(\frac{\bar{c}_H}{2} - 2\bar{c}_W \right) A_1 \left(\tau_W \right) \end{split}$$

- contributions from angular-dependent effective couplings missing
- $\Gamma(\gamma\gamma)|_{SILH}$ linear polynomial in Wilson coefficients

Wilson coefficients are scale dependent governed by renormalisation group (RG) equations

running needed to match experimental results at low energy with theory predictions at high energy

power counting \Rightarrow logarithmic singularities of d = 6 operators result only from diagrams with one d = 6 operator insertion \Rightarrow RG equation linear and homogeneous in α_i

at leading order in $\alpha_{\rm SM} = \alpha, \alpha/s_{\rm w}^2, \alpha_{\rm s}$:

$$\alpha_i(\mu) = \left(\delta_{ij} + \gamma_{ij}^{(0)} \frac{\alpha_{\rm SM}(\mu)}{4\pi} \log\left(\frac{\mu}{M}\right)\right) \alpha_i(M)$$

 $\gamma_{ij}^{(0)}$: LO coefficients of anomalous dimension matrix

general analysis of anomalous dimensions available: Alonso et al. '14 (for 2499 d = 6 operators)

Julius-Maximilians-

WÜRZBURG

- Higgs-coupling measurements need consistent framework beyond SM
- Effective Field Theory provides general framework if scale of New Physics large compared to EW scale
- tasks for the (near) future (\Rightarrow HXSWG)
 - agree on basis of d = 6 operators or a few bases with translation tables
 - agree on suitable subsets of operators (for initial fits)
 - calculate NLO corrections in EFT framework
 - implement in appropriate tools
 - perform coupling fits
- remember to use other frameworks as well!
 - specific models
 - form factors?

Julius-Maximilians-

WÜRZBURG