## Jet Vetoes Interfering with $H{\rightarrow}$ WW

Ian Moult

Massachusetts Institute of Technology

With lain Stewart : 1405.5534

Hamburg Workshop on Higgs Physics 2014

lan Moult (MIT)

Jet Vetoes Interfering with  $H{\rightarrow}$  WW

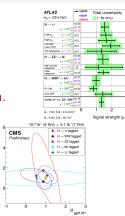
October 22, 2014 1 / 24

## Motivation

 In the absence of new physics, the focus of the next 100/fb will be on the precision measurements of Higgs properties:

Most interesting are Couplings and Width.

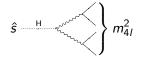
• Focus of first 25/fb was on-shell rate measurements:


$$\sigma_{\mathsf{nwa}} = \sigma_{i \to H} (\hat{s} = m_H^2) \frac{\Gamma_{H \to f}}{\Gamma_H}$$

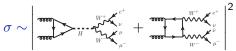
• In terms of couplings and width:

$$\sigma_{nwa} \sim \frac{g_i^2 g_f^2}{\Gamma_H} \implies \text{Invariant under } g \rightarrow \xi g, \quad \Gamma_H \rightarrow \xi^4 \Gamma_H$$

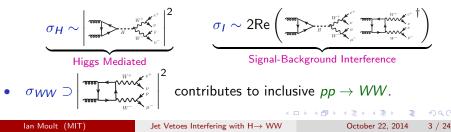
 Impossible to disentangle Higgs width from Higgs couplings with on-shell measurements 


 must go off-shell! (See also Stefan Liebler)




H<sup>VBF,VH</sup>

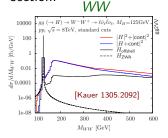
## Off-Shell Effects in Vector Boson Final States


•  $\Gamma_{H}^{\text{SM}} \simeq 4 MeV$ , but for decays to massive vector bosons there are non-negligible contributions from  $m_{41} \gg m_{H}$ .



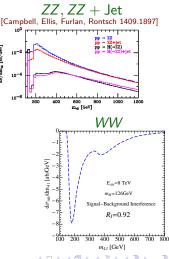
 Focus on these contributions for gg → H → WW (similar diagrams for ZZ). Two topologies contribute at LO:




• Two terms depend on the Higgs properties:



## Off-Shell Effects in Vector Boson Final States


• Off-Shell effects give  $\sim 10\%$  contribution to total integrated cross section.

o/dma [fb/GeV]



• Interference gives dominant off-shell contribution, and comes entirely from above  $m_{4l} = 2m_W$ .

$$R_I = \frac{\int dm_{4I} (\sigma_H + \sigma_I)}{\int dm_{4I} \sigma_H} = 0.92$$



## Connection to the Higgs Width

[Caolo, Melnikov 1307.4935] [Campbell, Ellis, Williams 1311.3589,1312.1628]

• Off-Shell Contributions are independent of the Higgs width:

$$\frac{1}{(\hat{s}-m_H^2)+i\Gamma_H m_H} \xrightarrow{\hat{s}\gg m_H} \frac{1}{(\hat{s}-m_H^2)}$$

 $\implies$  Provides sensitivity to distinct scalings

$$\sigma_{\text{nwa}} \sim \frac{g_i^2 g_f^2}{\Gamma_H}, \qquad \sigma_I \sim g_i g_f, \quad \sigma_H^{\text{off-shell}} \sim g_i^2 g_f^2,$$

allowing one to disentangle coupling and width information.

- More generally, probes new particle loops over a range of energies.
- Relies on ability to experimentally separate components

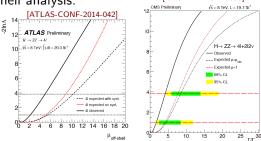
• 
$$H \rightarrow ZZ$$
: easy,  $\hat{s}$  is measured.

•  $H \rightarrow WW$ : use  $M_T^2 = (E_T^{\text{miss}} + E_T^{\text{II}})^2 + |\mathbf{p}_T^{\text{II}} + \mathbf{E}_T^{\text{miss}}|^2$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

## Higgs Width

- Extractions of  $\Gamma_H$  are model dependent.
- In a simple model, where only the SM couplings and width are modified as  $\Gamma_H = \xi^4 \Gamma_H^{SM}$ ,  $g = \xi g^{SM}$  (as used in CMS/ATLAS off-shell studies), the off-shell Higgs mediated and signal-background interference cross sections scale like


$$\sigma_{I} = \sqrt{\frac{\Gamma_{H}}{\Gamma_{H}^{\text{SM}}}} \sigma_{I}^{\text{SM}}, \quad \sigma_{H}^{\text{off-shell}} = \frac{\Gamma_{H}}{\Gamma_{H}^{\text{SM}}} \sigma_{H,\text{SM}}^{\text{off-shell}},$$

giving sensitivity to total Higgs width.

 With the addition of new particles (e.g. colored scalars), relation between on-shell and off-shell cross section is model dependent, but allows for constraints unavailable from on-shell measurements. [Englert, Spannowsky 1405.0285]

## Current Status

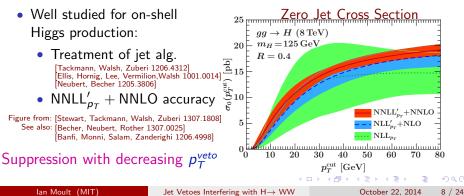
- Bounds of  $\Gamma_H \sim 5 \Gamma_H^{\text{SM}}$  from off-shell region in ZZ compared to  $\Gamma_H \sim 1000 \Gamma_H^{\text{SM}}$  from on-shell analysis.
- HXSWG investigating potential of off-shell measurements.
- Could play a large role in the next 100/fb.



[Campbell, Ellis, Furlan, Rontsch 1409.1897] [Henn, Melnikov, Smirnov 1402.7078]

Caola, Henn, Melnikov, Smirnov 1404.5590] -

- Motivates improved theoretical understanding of the far off-shell region, especially in the presence of realistic experimental cuts: Early theory calculations LO and ignored Jet Veto.
- In this talk, focus on the resummation of jet veto logarithms.
- Another direction is NLO, see:

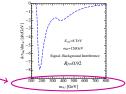

#### Jet Vetoes

• Jet Vetoes essential for  $H \rightarrow WW$  to reduce  $\bar{t}t$  background.

 $\implies$  Maximum sensitivity in zero jet bin:  $p_T^J < p_T^{veto}$ 

- Jet Binning also used in  $H \rightarrow ZZ$  to maximize sensitivity.
- Places severe constraints on radiation

 $\implies$  Large logarithms,  $\log m_H/p_T^{veto}$ , necessitate resummation.




# Jet Vetoes and Off-Shell Effects

# What changes when you go off-shell?

- Consider processes with contributions from a large range of  $\hat{s}$ .
- e.g. Off-Shell/ Interference in  $gg \to H \to WW$

Nontrivial contributions from  $m_{Al} = 160 \rightarrow \sim 700 \text{ GeV}$ 



・ 同 ト ・ ヨ ト ・ ヨ ト

• Resum  $\log \sqrt{\hat{s}}/p_T^{veto}$ : Changes significantly from on-shell to far off-shell.

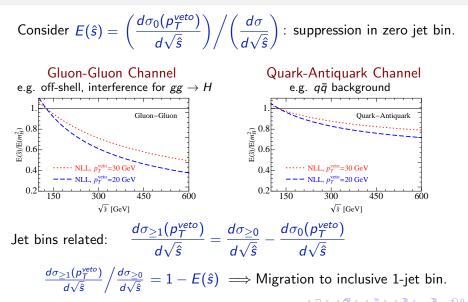
 $\implies$  Differential distributions in  $\hat{s}$  or  $M_T$  are reshaped.

• Doesn't occur in NWA where cross-section is evaluated at  $\hat{s} = m_{H}^2$ , and the effect of the jet veto is a multiplicative factor.

- 31

## Factorization Theorem with a $p_T^{veto}$

- $\log \sqrt{\hat{s}}/p_T^{veto}$  resummed by RG evolution in both virtuality and rapidity in Soft-Collinear Effective Theory (SCET).
- Factorization theorem for exclusive 0-jet bin:


- Hard function encodes process dependent hard matrix element. e.g.  $gg \rightarrow H \rightarrow WW \rightarrow \mu \bar{\nu}_{\mu} \bar{e} \nu_{e}$ .
- Beam and Soft functions depend only on measurement and parton identity.

10 / 24

Renormalization scale

μ RGE

### Jet Vetoes and Off-Shell Effects: Generics

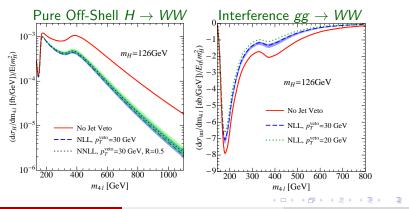


October 22, 2014 11 / 24

## $gg \to H \to WW \to \mu \bar{\nu}_{\mu} \bar{e} \nu_{e}$

- Use the phenomenologically interesting case of  $gg \rightarrow H \rightarrow WW \rightarrow \mu \bar{\nu}_{\mu} \bar{e} \nu_{e}$  to demonstrate the effect of the jet veto on the off-shell cross section.
- Match QCD to SCET helicity operators to easily interface with fixed order QCD calculations: [IM, Stewart, Tackmann, Waalewijn, Forthcoming] [Stewart, Tackmann, Waalewijn 1211.2305]

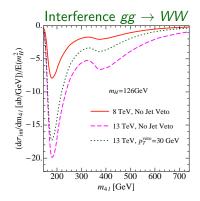
$$\mathcal{O}^{++} = \mathcal{B}^{a}_{n+} \mathcal{B}^{a}_{\bar{n}+} \bar{\mu} \gamma^{\alpha} (1-\gamma_{5}) \nu_{\mu} \bar{\nu}_{e} \gamma_{\alpha} (1-\gamma_{5}) e$$
$$\mathcal{O}^{--} = \mathcal{B}^{a}_{n-} \mathcal{B}^{a}_{\bar{n}-} \bar{\mu} \gamma^{\alpha} (1-\gamma_{5}) \nu_{\mu} \bar{\nu}_{e} \gamma_{\alpha} (1-\gamma_{5}) e$$


- No mixing between helicity structures under RGE.
- Wilson coefficients are given by (IR finite piece of) color stripped [Harlander, Kant 0509189] helicity amplitudes. Extract from: [Anastasiou, Beerli, Bucherer, Daleo, Kunszt 0611236] [Cambell, Ellis, Williams 1107,5569]
- Fully differential in leptonic final state.
- Similar approach applies to  $H \rightarrow ZZ$  if jet binning applied.

Ian Moult (MIT)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

#### Resummed Predictions for Signal-Background Interference


- Normalize the distributions to the jet veto suppression at m<sub>H</sub>. Shows the suppression of the interference relative to the on-shell contribution, due to the jet veto: strong ŝ dependence.
- Interference restricted to NLL accuracy, as NLO virtuals unknown.



Jet Vetoes Interfering with  $H \rightarrow WW$ 

#### 13 TeV

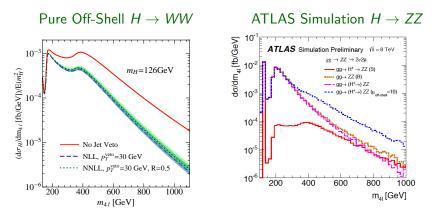
- At 13 TeV, large increase in gluon luminosity at high  $\hat{s}$ .
- Enhancement of off-shell effects and of the impact of the jet veto.



## Higgs Width Bounds

Recall three scalings:

[Caolo, Melnikov 1307.4935] [Campbell, Ellis, Williams 1311.3589,1312.1628]




- Apply cuts such that B, C = 0:  $0.75m_H < M_T < m_H$
- Compute normalization between theory prediction and experiment independent of  $\Gamma_H$  (Originally due to jet veto, and K-factors).
- Apply cuts such that A = 0:  $M_T > 300 \text{GeV}$  to maximize sensitivity to  $\Gamma_H$ .
- Place bounds on the Higgs width using previously calculated normalization.

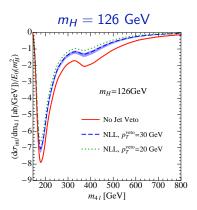
< 回 ト < 三 ト < 三 ト

## Higgs Width Bounds

• Relies on accurate theory prediction for the shape of  $m_{41}$  distribution!



Need to be able to distinguish QCD effects from New Physics.

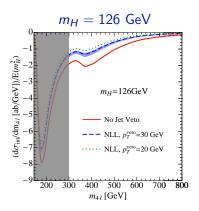

\_\_\_ ▶

#### Higgs Width Bounds in $H \rightarrow WW$

- Jet Veto modifies the shape of the differential distribution.
- Zero jet cross-section in far off-shell region reduced by factor of  $\sim$  2 relative to on-shell contribution.

Inclusion of Jet veto effects essential when comparing cross section at widely separated  $m_{4/}$ .

Weakens bound on  $\Gamma_H$  by a factor of 2 or more.




#### Higgs Width Bounds in $H \rightarrow WW$

- Jet Veto modifies the shape of the differential distribution.
- Zero jet cross-section in far off-shell region reduced by factor of  $\sim$  2 relative to on-shell contribution.

Inclusion of Jet veto effects essential when comparing cross section at widely separated  $m_{4/}$ .

Weakens bound on  $\Gamma_H$  by a factor of 2 or more.



## Conclusions

- Jet Vetoes have important consequences when studying observables that contribute over a large range of  $\hat{s}$ : they reshape differential distributions.
- Large impact on the recent program to extract the Higgs width from off-shell cross section measurements, modifying the predicted bounds by a factor of  $\sim 2$  in  $H \rightarrow WW$ .
- Resummed predictions for the off-shell cross section including signal-background interference allow this region to be used as a sensitive probe of BSM physics in  $H \rightarrow WW$ , and for more exclusive measurements in  $H \rightarrow ZZ$ .

18 / 24

# Backup

3

<ロ> (日) (日) (日) (日) (日)

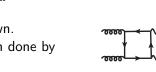
### Expansion to NLL

• Quantify general effect of jet veto as a function of  $\hat{s}$ :

$$E(\hat{s}) = \left(\frac{d\sigma_0(p_T^{veto})}{d\sqrt{\hat{s}}}\right) \middle/ \left(\frac{d\sigma}{d\sqrt{\hat{s}}}\right)$$

• Convenient expansion to NLL, in terms of standard QCD objects(with canonical scale choices): [Banfi, Salam, Zanderighi 1203.5773]

$$\sigma_{NLL}(p_T^{veto}) = \int d\hat{s} \int dx_1 dx_2 f_1(x_1, \mu = p_T^{veto}) f_2(x_2, \mu = p_T^{veto}) \\ \times \delta(x_1 x_2 E_{cm}^2 - \hat{s}) |\mathcal{M}(\hat{s})|^2 e^{-K_{NLL}(\sqrt{\hat{s}}/p_T^{veto})}$$


• Use NLL expression to understand basic behavior/dependencies before focusing on the example of  $gg \rightarrow H \rightarrow WW$ .

20 / 24

4 AR & 4 E & 4 E &

# $gg \to H \to WW \to \mu \bar{\nu}_{\mu} \bar{e} \nu_{e}$

- Difficult regime for fixed order calculations: Require full dependence on top quark mass
- C<sup>H</sup>: Analytic result for two loop virtuals with quark mass dependence known. [Harlander, Kant 0509189] [Anastasiou, Beerli, Bucherer, Daleo, Kunszt 0611236]
   C<sup>C</sup>: Two loop virtuals unknown. Leading (One loop) calculation done by MCFM: Extract C<sup>C</sup><sub>L</sub>, C<sup>C</sup><sub>L</sub>



[ab/GeV

[Campbell, Ellis, Williams 1107.5569]

< 回 ト < 三 ト < 三 ト

E<sub>cm</sub>=8 TeV m<sub>H</sub>=126GeV Background Interference

 $R_1 = 0.92$ 

mai [GeV]

600 700

• Restricted to NLL for Signal-Background interference.

October 22, 2014 21 / 24

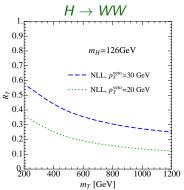
## Higgs Mediated Contribution

• Use Higgs mediated off-shell contribution to assess impact of NNLL terms:

 $\implies$  First sensitive to jet algorithm at NNLL:  $\log\left(\sqrt{\hat{s}}/\rho_T^{veto}\right)\log R$ 

- Normalize result by suppression at *m<sub>H</sub>*. Focus on modification to the shape.
- Large  $\hat{s}$  dependent suppression.
- NNLL, NLL results similar.
  - $\implies$  NLL captures dominant modification to shape.

This is important for interference, where we are restricted to NLL.

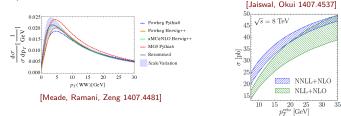

Ian Moult (MIT)



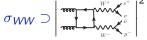
 $10^{-3}$   $(10^{-3})$   $(10^{-4})$   $(10^{-4})$   $(10^{-5})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$   $(10^{-6})$  $(10^{$ 

#### Suppression as a Function of $M_T$

• Can also consider the suppression as a function of the transverse mass,  $m_T$ .




• Faster suppression as a function of  $m_T$ , since  $m_T \leq \sqrt{\hat{s}}$ .


23 / 24

## Inclusive $pp \rightarrow WW$

- Current interest in  $p_T$ , and  $p_T^{veto}$  resummation for inclusive  $pp \rightarrow WW$  cross-section to address anomaly in LHC 8 TeV data.
- Resummation seems to reduce discrepancy between theory and experiment.



• Requires understanding interplay of  $p_T$ , and  $p_T^{veto}$  resummation, as well as inclusion of contributions from gg initial state.

