Introduction to the calculation of Feynman Integrals

Peter Marquard

DESY

CAPP 2015

Outline

(9) Introduction
(2) Mathematical prelude
(3) Direct evaluation of Feynman integrals
(4) Tensor integrals
(5) Integration by parts

6 Mellin Barnes
(7) Sector decomposition
(8) Differential equations
(9) Asymptotic expansions

Outline

(1) Introduction

2 Mathematical prelude
(3) Direct evaluation of Feynman integrals
4. Tensor integrals
(5) Integration by parts
(6) Mellin Barnes
7. Sector decomposition
8) Differential equations
(9) Asymptotic expansions

Introduction

- Feynman integrals come in different shapes and colors
- one loop \leftrightarrow many loops
- many legs \leftrightarrow no legs
- many scales \leftrightarrow no scales
- for many types of diagrams many results are known especially one-loop is solved
- at three loops and more, massive tadpoles and massless propagators have been studied in great detail
- at two loops, much progress has been made for integrals relevant for $2 \rightarrow 2$ scattering processes, but every new process requires a new study of the integrals involved

Introduction

- many different methods have been invented over the years to calculate the needed integrals
- most methods work well for certain classes but fail for others
- the ultimate method/tool is still missing

Outline

(1) Introduction
(2) Mathematical prelude
(3) Direct evaluation of Feynman integrals

4 Tensor integrals
(5) Integration by parts

6 Mellin Barnes
? Sector decomposition
(8) Differential equations

- Asymptotic expansions

Gamma function

Defining property

$$
z \Gamma(z)=\Gamma(z+1)=z!
$$

Integral representation

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t
$$

We see immediately from the properties that $\Gamma(-n)$ is singular for $n=0,1,2, \ldots$.
The singularities are simple poles

$$
\Gamma(-n+\epsilon)=\frac{(-1)^{n}}{n!} \frac{1}{\epsilon}+\mathcal{O}\left(\epsilon^{0}\right)
$$

Series expansion of the Gamma function

In many applications one needs more than the pole of the Γ-function. This is best done by using the derivative of $\log \Gamma(z)$ and defines the digamma function $\Psi(z)$

$$
\Psi(z)=\frac{\mathrm{d} \log (\Gamma(z))}{\mathrm{d} z}=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}
$$

Therefore,

$$
\begin{aligned}
\Gamma\left(z-z_{0}\right)= & \Gamma\left(z_{0}\right)+\Gamma\left(z_{0}\right) \Psi\left(z_{0}\right)\left(z-z_{0}\right) \\
& +\frac{1}{2}\left(\Gamma\left(z_{0}\right) \Psi^{\prime}\left(z_{0}\right)+\Gamma\left(z_{0}\right) \Psi^{2}\left(z_{0}\right)\right)\left(z-z_{0}\right)^{2}
\end{aligned}
$$

for regular points z_{0}.

The Digamma-function $\Psi(z)$

The digamma function satisfies the relation

$$
\psi(z+1)=\psi(z)+\frac{1}{z}
$$

For positive integer values the digamma function evaluates to

$$
\begin{aligned}
\Psi(1) & =-\gamma_{E}, \\
\Psi(2) & =1-\gamma_{E} \\
& \cdots \\
\Psi(n+1) & =\sum_{k=1}^{n} \frac{1}{k}-\gamma_{E}
\end{aligned}
$$

with the Euler-Mascheroni constant $\gamma_{E}=0.577216 \ldots$

The Digamma-function $\Psi(z)$ cont'd

For non-positive integers the digamma functions evaluates again to simple poles

$$
\Psi(-n+\epsilon)=-\frac{1}{\epsilon}+\mathcal{O}\left(\epsilon^{0}\right)
$$

Schwinger Parametrization

From the definition of the Γ function follows immediately the Schwinger Parametrization

$$
\frac{1}{\left(-k^{2}+M^{2}\right)^{\alpha}}=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \mathrm{d} t t^{\alpha-1} e^{-\left(M^{2}-k^{2}\right) t}
$$

by performing the substitution $t \rightarrow t^{\prime}=\left(M^{2}-k^{2}\right) t$

Polylogarithms

Function classes appearing in Feynman integral calculations are the Polylogarithms

$$
\operatorname{Li}_{n}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{n}}
$$

which for $z \rightarrow 1$ give the ζ values

$$
\begin{gathered}
\zeta_{n}=\sum_{k=1}^{\infty} \frac{1}{k^{n}} \\
\operatorname{Li}_{n}(1)=\zeta_{n} \\
\zeta_{2}=\frac{\pi}{6}, \zeta_{3}=1.2020 \ldots, \zeta_{4}=\frac{\pi^{4}}{90}, \cdots, \zeta_{2 n} \propto \pi^{2 n}
\end{gathered}
$$

Polylogarithms

The appear in the calculations from integrals over logarithms

$$
\begin{aligned}
\int \mathrm{d} x \log x /(1-x)= & \operatorname{Li}_{2}(1-x) \\
\int \mathrm{d} x \mathrm{Li}_{2}(x) / x= & \operatorname{Li}_{3}(1-x) \\
\int \mathrm{d} x \mathrm{Li}_{2}(1-x) / x= & -2 \mathrm{Li}_{3}(x)+\mathrm{Li}_{2}(1-x) \log (x) \\
& +2 \mathrm{Li}_{2}(x) \log (x)+\log (1-x) \log ^{2}(x)
\end{aligned}
$$

The Polylogarithms are not very systematic and many relations between them exist.

Harmonic Polylogarithms

A more systematic approach are the harmonic polylogarithms (HPLs) defined as iterated integrals over the alphabet

$$
\begin{gathered}
f_{-1}=\frac{1}{1+x}, f_{0}=\frac{1}{x}, f_{1}=\frac{1}{1-x} \\
\int_{0}^{x} \mathrm{~d} x^{\prime} \operatorname{HPL}\left(\vec{n} ; x^{\prime}\right) f_{a}\left(x^{\prime}\right)=\operatorname{HPL}(a, \vec{n} ; x)
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{HPL}(1, x)=-\log (1-x) \operatorname{HPL}(-1, x)=\log (1+x) \\
& \operatorname{HPL}(0, x)=\log (x), \operatorname{HPL}(0 \ldots, 0, x)=\frac{1}{n!} \log ^{n}(x)
\end{aligned}
$$

The Minkowski Metric

$$
g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)
$$

Outline

(1) Introduction

- Mat'nematical prelude
(3) Direct evaluation of Feynman integrals
(4) Tensor integrals
(5) Integration by parts
- Mellin Barnes
(7) Sector decomposition
(8) Differential equations
- Asymptotic expansions

Simple example

Consider simplest diagram possible, the one-loop tadpole (vacuum diagram)

$$
I_{1}=\int \mathrm{d}^{4} k \frac{1}{-k^{2}+M^{2}}
$$

Either introduce an explicit parametrization of the measure or use the Schwinger parametrization for $\alpha=1$

$$
\iota_{1}=\int \mathrm{d}^{4} k \int_{0}^{\infty} \mathrm{d} t e^{-\left(M^{2}-k^{2}\right) t}
$$

Simple example

Consider simplest diagram possible, the one-loop tadpole (vacuum diagram)

$$
I_{1}=\int \mathrm{d}^{4} k \frac{1}{-k^{2}+M^{2}}
$$

Either introduce an explicit parametrization of the measure or use the Schwinger parametrization for $\alpha=1$

$$
I_{1}=\int_{0}^{\infty} \mathrm{d} t e^{-M^{2} t} \int \mathrm{~d}^{4} k e^{k^{2} t}
$$

Simple example

perform Wick rotation

$$
k_{0} \rightarrow i k_{0}
$$

with the result that

$$
k^{2}=k_{0}^{2}-k_{1}^{2}-k_{2}^{2}-k_{3}^{2} \rightarrow-k_{0}^{2}-k_{1}^{2}-k_{2}^{2}-k_{3}^{2}
$$

and we get

$$
I_{1}=i \int_{0}^{\infty} \mathrm{d} t e^{-M^{2} t} \int \mathrm{~d}^{4} k e^{-k^{2} t}
$$

Simple example

$$
I_{1}=i \int_{0}^{\infty} \mathrm{d} t e^{-M^{2} t} \int \mathrm{~d}^{4} k e^{-\kappa^{2} t}
$$

doing the Gaussian integral we get

$$
\iota_{1}=i \pi^{2} \int_{0}^{\infty} \mathrm{d} t \frac{e^{-M^{2} t}}{t^{2}}
$$

This integral does not converge for $t \rightarrow 0$.
\Rightarrow first need a way to give meaning to these kind of integrals.

Dimensional regularization

- Most Feynman integrals are not convergent in four space time dimensions.
- Common way out is the use of dimensional regularization, where the four-dimensional space time is extended to d dimensions.
- Divergences of the integrals then become manifest as poles in $d-4$.
- d dimensional integrals behave identical to their four-dimensional counterparts

d-dimensional integration

d-dimensional integrals have to fulfil these axioms
Linearity

$$
\int \mathrm{d}^{d} k(a f(k)+b g(k))=a \int \mathrm{~d}^{d} k f(k)+b \int \mathrm{~d}^{d} k g(k)
$$

Scaling

$$
\int \mathrm{d}^{d} k f(s k)=s^{-d} \int \mathrm{~d}^{d} k f(k)
$$

Translational invariance

$$
\int \mathrm{d}^{d} k f(k+p)=\int \mathrm{d}^{d} k f(k)
$$

d-dimensional integration - properties

Pro: dimensional regularization regularizes both UV and IR singularities

d-dimensional integration - properties

Pro: dimensional regularization regularizes both UV and IR singularities
Con: dimensional regularization regularizes both UV and IR singularities in the same way

d-dimensional integration - properties

Pro: dimensional regularization regularizes both UV and IR singularities
Con: dimensional regularization regularizes both UV and IR singularities in the same way

- scaleless integrals vanish

$$
\int \mathrm{d}^{d} k\left(k^{2}\right)^{\alpha}=0
$$

- integration by parts

$$
\int \mathrm{d}^{d} k \frac{\partial}{\partial k^{\mu}} f(k)=0
$$

- Interchange of integrations

$$
\int \mathrm{d}^{d} p \int \mathrm{~d}^{d} k f(p, k)=\int \mathrm{d}^{d} k \int \mathrm{~d}^{d} p f(p, k)
$$

Gaussian integrals in dimensions

For many purposes the problem of d-dimensional integrations can be reduced to one specific integral: the Gaussian integral in d dimensions

$$
\int \mathrm{d}^{d} k e^{-k^{2}}=\pi^{\frac{d}{2}}
$$

which is the most natural generalization of the integer dimension one.

Gaussian integrals in d dimensions

For many purposes the problem of d-dimensional integrations can be reduced to one specific integral:
the Gaussian integral in d dimensions

$$
\int \mathrm{d}^{d} k e^{-A k^{2}}=\left(\frac{\pi}{A}\right)^{\frac{d}{2}}
$$

which is the most natural generalization of the integer dimension one.
The dependence on A follows by rescaling $k \rightarrow \frac{k}{\sqrt{A}}$

Simple example - Improved

$$
\begin{gathered}
I_{1}=\int \mathrm{d}^{d} k \frac{1}{-k^{2}+M^{2}} \\
I_{1}=i \int_{0}^{\infty} \mathrm{d} t e^{-M^{2} t} \int \mathrm{~d}^{d} k e^{-k^{2} t} \\
I_{1}=i \pi^{d / 2} \int_{0}^{\infty} \mathrm{d} t \frac{e^{-M^{2} t}}{t^{d / 2}}
\end{gathered}
$$

Simple example - Improved

$$
\begin{gathered}
I_{1}=\int \mathrm{d}^{d} k \frac{1}{-k^{2}+M^{2}} \\
I_{1}=i \int \mathrm{~d} t e^{-M^{2} t} \int \mathrm{~d}^{d} k e^{-k^{2} t} \\
I_{1}=i \pi^{d / 2} \int_{0}^{\infty} \mathrm{d} t t^{-d / 2} e^{-M^{2} t}
\end{gathered}
$$

Simple example - Improved

$$
\begin{gathered}
I_{1}=\int \mathrm{d}^{d} k \frac{1}{-k^{2}+M^{2}} \\
l_{1}=i \int \mathrm{~d} t e^{-M^{2} t} \int \mathrm{~d}^{d} k e^{-k^{2} t} \\
I_{1}=i \pi^{d / 2} \int_{0}^{\infty} \mathrm{d} t t^{-d / 2} e^{-M^{2} t} \\
I_{1}=i \pi^{d / 2}\left(M^{2}\right)^{d / 2-1} \int_{0}^{\infty} \mathrm{d} t t^{-d / 2} e^{-t} \\
=i \pi^{d / 2}\left(M^{2}\right)^{d / 2-1} \Gamma(-d / 2+1)
\end{gathered}
$$

Simple example - Improved

$$
\begin{aligned}
I_{1} & =\int \mathrm{d}^{d} k \frac{1}{-k^{2}+M^{2}} \\
& =i \pi^{d / 2}\left(M^{2}\right)^{d / 2-1} \Gamma(-d / 2+1)
\end{aligned}
$$

$\left(M^{2}\right)^{d / 2-1}$ overall mass dimension of the integral, could be read off from the original integral
$\Gamma(-d / 2+1)$ contains the real information singular for $d \rightarrow 4$

$$
\begin{aligned}
\Gamma(-d / 2+1)= & -\frac{1}{\epsilon}+\left(\gamma_{E}-1\right) \\
& +\frac{1}{12}\left(-6 \gamma_{E}^{2}+12 \gamma_{E}-\pi^{2}-12\right) \epsilon
\end{aligned}
$$

Simple example - Improved

$$
\begin{aligned}
\Gamma(-d / 2+1)= & -\frac{1}{\epsilon}+\left(\gamma_{E}-1\right) \\
& +\frac{1}{12}\left(-6 \gamma_{E}^{2}+12 \gamma_{E}-\pi^{2}-12\right) \epsilon
\end{aligned}
$$

not a very compact result, better to choose a suitable normalization

$$
\Gamma(-d / 2+1) / \Gamma(1+\epsilon)=-\frac{1}{\epsilon}-1-\epsilon
$$

or

$$
\Gamma(-d / 2+1) / \exp \left(-\Gamma_{E} \epsilon\right)=-\frac{1}{\epsilon}-1+\left(-1-\frac{\pi^{2}}{12}\right) \epsilon
$$

Simple example - Extended

$$
\begin{gathered}
I_{1}=\int \mathrm{d}^{d} k \frac{1}{\left(-k^{2}+M^{2}\right)^{\alpha}} \\
I_{1}=i \frac{1}{\Gamma(\alpha)} \int \mathrm{d} t t^{\alpha-1} e^{-M^{2} t} \int \mathrm{~d}^{d} k e^{-k^{2} t} \\
I_{1}=i \frac{\pi^{d / 2}}{\Gamma(\alpha)} \int_{0}^{\infty} \mathrm{d} t t^{\alpha-d / 2-1} e^{-M^{2} t} \\
I_{1}=\frac{i \pi^{d / 2}}{\Gamma(\alpha)}\left(M^{2}\right)^{d / 2-\alpha} \int_{0}^{\infty} \mathrm{d} t t^{\alpha-d / 2-1} e^{-t} \\
=\frac{i \pi^{d / 2}}{\Gamma(\alpha)}\left(M^{2}\right)^{d / 2-\alpha} \Gamma(\alpha-d / 2)
\end{gathered}
$$

Also the integral with $\alpha=2$ is divergent

not that simple example: One-loop propagator

Consider the one-loop propagator

$$
P_{1}=\int \mathrm{d}^{4} k \frac{1}{-k^{2}\left(-(k+q)^{2}\right)}
$$

introduce Feynman parameters

$$
\frac{1}{D_{1}^{k_{1}} \cdots D_{n}^{k_{n}}}=\frac{\Gamma\left(\sum_{i} k_{i}\right)}{\prod_{i} \Gamma\left(k_{i}\right)} \int_{0}^{1} \mathrm{~d} x_{1} \cdots \int_{0}^{1} \mathrm{~d} x_{n} \frac{\delta\left(\sum_{i} x_{i}-1\right) \prod_{i} x_{i}^{k_{i}-1}}{\left(\sum_{i} x_{i} D_{i}\right)^{\sum_{i} k_{i}}}
$$

in their simplest form

$$
\frac{1}{D_{1} D_{2}}=\int_{0}^{1} \mathrm{~d} x \frac{1}{\left[x D_{1}+(1-x) D_{2}\right]^{2}}
$$

not that simple example: One-loop propagator

$$
\begin{aligned}
P_{1} & =\int \mathrm{d}^{4} k \frac{1}{-k^{2}\left(-(k+q)^{2}\right)} \\
& =\int \mathrm{d}^{4} k \int_{0}^{1} \mathrm{~d} x \frac{1}{\left[-k^{2}-2 x k \cdot q-x q^{2}\right]^{2}}
\end{aligned}
$$

complete the square

$$
P_{1}=\int \mathrm{d}^{4} k \int_{0}^{1} \mathrm{~d} x \frac{1}{\left[-(k+x q)^{2}+x^{2} q^{2}-x q^{2}\right]^{2}}
$$

shift $k=k+(1-x) q$

$$
P_{1}=\int \mathrm{d}^{4} k \int_{0}^{1} \mathrm{~d} x \frac{1}{\left[-k^{2}+x^{2} q^{2}-x q^{2}\right]^{2}}
$$

not that simple example: One-loop propagator

$$
P_{1}=\int \mathrm{d}^{4} k \int_{0}^{1} \mathrm{~d} x \frac{1}{\left[-k^{2}+x(x-1) q^{2}\right]^{2}}
$$

doing the momentum integration gives

$$
P_{1}=i \pi^{d / 2} \Gamma(2-d / 2) \int_{0}^{1} \mathrm{~d} x\left[x(x-1) q^{2}\right]^{d / 2-2}
$$

let's assume $q^{2}<0$

$$
P_{1}=i \pi^{d / 2} \Gamma(2-d / 2)\left(-q^{2}\right)^{d / 2-2} \int_{0}^{1} \mathrm{~d} x[x(1-x)]^{d / 2-2}
$$

not that simple example: One-loop propagator

$$
P_{1}=i \pi^{d / 2} \Gamma(2-d / 2)\left(-q^{2}\right)^{d / 2-2} \int_{0}^{1} \mathrm{~d} x[x(1-x)]^{d / 2-2}
$$

what is left is special case of the Beta-function

$$
\begin{gathered}
B(a, b)=\int \mathrm{d} t t^{a-1}(1-t)^{b-1}=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} \\
P_{1}=i \pi^{d / 2} \Gamma(2-d / 2)\left(-q^{2}\right)^{d / 2-2} \frac{\Gamma^{2}(d / 2-1)}{\Gamma(d+2)}
\end{gathered}
$$

- branch cuts appear in an Feynman integral when the particles in the loop can be produced as real particles
- in the propagator example before the factor

$$
\left(-q^{2}\right)^{d / 2-2}
$$

could have again be predicted from mass dimension of the the analytic properties of the diagram

- the imaginary parts then corresponds to the total cross section belonging the the respective cut

Outline

(1) Introduction
(2) Mathematical prelude
(3) Direct evaluation of Feynman integrals

4 Tensor integrals
(5) Integration by parts

6 Mellin Barnes
(-) Sector decomposition
(8) Differential equations

- Asymptotic expansions

Tensor integrals

So far we have only dealt with scalar integrals, i.e. integrals with no vectors with free indices in the numerator

$$
\mu^{\mu_{1} \cdots \mu_{n}}=\int d^{d} k \frac{k^{\mu_{1}} \cdots k^{\mu_{n}}}{D_{1} \cdots D_{N}}
$$

At one-loop it has long been worked out, how to reduce tensor integrals to scalar integrals \Rightarrow Passarino Veltman reduction

Passarino Veltman reduction: Example

consider the two-point function with numerator

$$
\int d^{d} k \frac{k^{\mu}}{k^{2}(k+q)^{2}}
$$

This has to evaluate to

$$
\int d^{d} k \frac{k^{\mu}}{k^{2}(k+q)^{2}}=q^{\mu} B_{1}\left(q^{2}\right)
$$

multiply both sides with q^{μ}

$$
\int d^{d} k \frac{k \cdot q}{k^{2}(k+q)^{2}}=q^{2} B_{1}\left(q^{2}\right)
$$

Passarino Veltman reduction: Example

$$
\int d^{d} k \frac{k \cdot q}{k^{2}(k+q)^{2}}=q^{2} B_{1}\left(q^{2}\right)
$$

rewrite the scalar product

$$
\begin{gathered}
k \cdot q=\frac{1}{2}\left((k+q)^{2}-k^{2}-q^{2}\right) \\
\frac{1}{2} \int d^{d} k \frac{(k+q)^{2}-k^{2}-q^{2}}{k^{2}(k+q)^{2}}=q^{2} B_{1}\left(q^{2}\right)
\end{gathered}
$$

Passarino Veltman reduction: Example

$$
\frac{1}{2} \int d^{d} k \frac{(k+q)^{2}-k^{2}-q^{2}}{k^{2}(k+q)^{2}}=q^{2} B_{1}\left(q^{2}\right)
$$

cancel the common factors and solve for $B_{1}\left(q^{2}\right)$

$$
\begin{aligned}
B_{1}\left(q^{2}\right)= & \frac{1}{2 q^{2}}\left(\int d^{d} k \frac{1}{k^{2}}-\int d^{d} k \frac{1}{(k+q)^{2}}\right) \\
& -\frac{1}{2} \int \mathrm{~d} k \frac{1}{k^{2}(k+q)^{2}}
\end{aligned}
$$

the first two integrals vanish and we have

$$
B_{1}\left(q^{2}\right)=-\frac{1}{2} \int d^{d} k \frac{1}{k^{2}(k+q)^{2}}
$$

Projectors

- Most of the time it is more convenient not to have open Lorentz indices from the very start
- To avoid this the use of projectors is very convenient
- As an example let us consider corrections to the photon propagator $\Pi^{\mu \nu}(q)$
- from Lorentz covariance we know it can be written in the form

$$
\Pi^{\mu \nu}=\left(q^{2} g^{\mu \nu}-q^{\mu} q^{\nu}\right) \Pi_{T}\left(q^{2}\right)+q^{\mu} q^{\nu} \Pi_{L}
$$

- to calculate Π_{T} and Π_{L} we can use the projectors

$$
P_{T}=\left(q^{2} g^{\mu \nu}-q^{\mu} q^{\nu}\right) /(q \cdot q)^{2} /(d-1), P_{L}=q^{\mu} q^{\nu} /(q \cdot q)^{2}
$$

Outline

(9) Introduction
(2) Mathematical prelude
(3) Direct evaluation of Feynman integrals
a Tensor integrals
(5) Integration by parts

6 Mellin Barnes
(7) Sector decomposition
(8) Differential equations
(9) Asymptotic expansions

Integration by parts

- state of the art calculations require the calculation of $\mathcal{O}\left(10^{3}\right)$ $\mathcal{O}\left(10^{7}\right)$ Feynman integrals
- especially multi-loop or calculations involving expansions require the calculation of many integrals
- individual calculation of all these integrals is not feasible
- the number of integrals can be greatly reduced by applying the so-called integration-by-parts identities

Integration by parts

Integration-by-parts identities are based on the property

$$
0=\int \mathrm{d}^{d} k \frac{\partial}{\partial k_{i}^{\mu}} \frac{1}{D_{1}^{k_{1}} \cdots D_{n}^{k_{n}}}
$$

which being the integral of a total derivative evaluates to a surface term and can be shown to vanish.

Integration by parts

To make them more manageable contract with either an external or a loop momentum

$$
0=\int \mathrm{d}^{d} k \frac{\partial}{\partial k_{i}^{\mu}} \frac{\left\{k^{\mu}, q_{j}^{\mu}\right\}}{D_{1}^{k_{1}} \cdots D_{n}^{k_{n}}}
$$

which then yields

$$
\# \text { loops } \times(\# \text { loops }+\#(\text { indep ext momenta }))
$$

relations

Integration by parts

Integration-parts-relations can either be used by

- constructing a set of symbolic relations reducing the number of propagators
LiteRed [Lee]
- explicitly applying the relations to a set of integrals and solving the resulting system of linear equations
Air [Anastasiou, Lazopoulos]
FIRE
Reduze
[Smirnov]
[v. Manteuffel, (Studerus)]

Simple example

Consider the class of integrals

$$
J(n)=\int \mathrm{d}^{d} k \frac{1}{\left(k^{2}-M^{2}\right)^{n}}
$$

Applying the only IBP relation leads to

$$
\begin{aligned}
0 & =\int \mathrm{d}^{d} k \frac{\partial}{\partial k^{\mu}} \frac{k^{\mu}}{\left(k^{2}-M^{2}\right)^{n}} \\
& =d J(n)-2 n \int \mathrm{~d}^{d} k \frac{k^{2}}{\left(k^{2}-M^{2}\right)^{n+1}}
\end{aligned}
$$

Simple example

Consider the class of integrals

$$
J(n)=\int \mathrm{d}^{d} k \frac{1}{\left(k^{2}-M^{2}\right)^{n}}
$$

Applying the only IBP relation leads to

$$
\begin{aligned}
0 & =\int \mathrm{d}^{d} k \frac{\partial}{\partial k^{\mu}} \frac{k^{\mu}}{\left(k^{2}-M^{2}\right)^{n}} \\
& =d J(n)-2 n \int \mathrm{~d}^{d} k \frac{\left(k^{2}-M^{2}\right)+M^{2}}{\left(k^{2}-M^{2}\right)^{n+1}} \\
& =(d-2 n) J(n)-2 n M^{2} J(n+1)
\end{aligned}
$$

Notation

For the presentation of IBP-identities a notation using lowering and raising operators is commonly used.

$$
J\left(n_{1}, \ldots, n_{N}\right)=\int \mathrm{d}^{\mathrm{d}} k \frac{1}{D_{1}^{n_{1}} \cdots D_{N}^{n_{N}}}
$$

The operators i^{+}and i^{-}act on $J\left(n_{1}, \ldots, n_{N}\right)$ as

$$
\begin{aligned}
i^{+} J\left(n_{1}, \ldots, n_{N}\right) & =J\left(n_{1}, \ldots, n_{i}+1, \ldots, n_{N}\right) \\
i^{-} J\left(n_{1}, \ldots, n_{N}\right) & =J\left(n_{1}, \ldots, n_{i}-1, \ldots, n_{N}\right)
\end{aligned}
$$

Note: i^{+}always comes together with an n_{i} and therefore the n_{i} is sometimes included in the definition of the operator.

Simple example cont'd

Using the new notation the IBP identity can be written as

$$
0=\left(\left(d-2 n_{1}\right)-2 n M^{2} 1^{+}\right) J\left(n_{1}\right)
$$

or simply

$$
\left(d-2 n_{1}\right)-2 n_{1} M^{2} 1^{+}
$$

implying the application to an integral and omitting the left-hand side

Simple example cont'd

In this simple case the IBP identities can easily be solved leading to

$$
J(n+1)=\frac{d-2 n}{2 n M^{2}} J(n)
$$

and explicitly to

$$
\begin{aligned}
J(2) & =\frac{d-2}{2 M^{2}} J(1) \\
J(3) & =\frac{d-4}{4 M^{2}} J(2)=\frac{(d-2)(d-4)}{8 M^{4}} J(1)
\end{aligned}
$$

Exercise: one-loop propagator

Derive the IBP relations for the class of one-loop propagator integrals

$$
P_{1}=\int d^{d} k \frac{1}{\left(k^{2}\right)^{n_{1}}\left((k+q)^{2}\right)^{n_{2}}}
$$

and try to solve them

Exercise: one-loop propagator

The two IBP relations for this class of integrals can be obtained by evaluating

$$
0=\int d^{d} k \frac{\partial}{\partial k^{\mu}} \frac{k^{\mu}}{\left(k^{2}\right)^{n_{1}}\left((k+q)^{2}\right)^{n_{2}}}
$$

and

$$
0=\int d^{d} k \frac{\partial}{\partial k^{\mu}} \frac{q^{\mu}}{\left(k^{2}\right)^{n_{1}}\left((k+q)^{2}\right)^{n_{2}}}
$$

Let us call the integrals

$$
J\left(n_{1}, n_{2}\right)
$$

Relation I

$$
\begin{aligned}
0= & \int d^{d} k \frac{\partial}{\partial k^{\mu}} \frac{k^{\mu}}{\left(k^{2}\right)^{n_{1}}\left((k+q)^{2}\right)^{n_{2}}} \\
= & d J\left(n_{1}, n_{2}\right)-2 n_{1} \int d^{d} k \frac{k^{2}}{\left(k^{2}\right)^{n_{1}+1}\left((k+q)^{2}\right)^{n_{2}}} \\
& -2 n_{2} \int d^{d} k \frac{(k+q) \cdot k}{\left(k^{2}\right)^{n_{1}}\left((k+q)^{2}\right)^{n_{2}+1}}
\end{aligned}
$$

Relation I

$$
\begin{aligned}
0= & \int d^{d} k \frac{\partial}{\partial k^{\mu}} \frac{k^{\mu}}{\left(k^{2}\right)^{n_{1}}\left((k+q)^{2}\right)^{n_{2}}} \\
= & d J\left(n_{1}, n_{2}\right)-2 n_{1} J\left(n_{1}, n_{2}\right) \\
& -2 n_{2} \int d^{d} k \frac{(k+q) \cdot k}{\left(k^{2}\right)^{n_{1}}\left((k+q)^{2}\right)^{n_{2}+1}} \\
= & d J\left(n_{1}, n_{2}\right)-2 n_{1} J\left(n_{1}, n_{2}\right) \\
& -2 n_{2} \int d^{d} k \frac{\frac{1}{2}\left(k^{2}+(k+q)^{2}-q^{2}\right)}{\left(k^{2}\right)^{n_{1}}\left((k+q)^{2}\right)^{n_{2}+1}}
\end{aligned}
$$

Relation I

$$
\begin{aligned}
0= & \int d^{d} k \frac{\partial}{\partial k^{\mu}} \frac{k^{\mu}}{\left(k^{2}\right)^{n_{1}}\left((k+q)^{2}\right)^{n_{2}}} \\
= & d J\left(n_{1}, n_{2}\right)-2 n_{1} J\left(n_{1}, n_{2}\right) \\
& -2 n_{2} \int d^{d} k \frac{(k+q) \cdot k}{\left(k^{2}\right)^{n_{1}}\left((k+q)^{2}\right)^{n_{2}+1}} \\
= & d J\left(n_{1}, n_{2}\right)-2 n_{1} J\left(n_{1}, n_{2}\right) \\
& -n_{2}\left(J\left(n_{1}-1, n_{2}+1\right)+J\left(n_{1}, n_{2}\right)-q^{2} J\left(n_{1}, n_{2}+1\right)\right) \\
= & \left(d-2 n_{1}-n_{2}\right) J\left(n_{1}, n_{2}\right) \\
& -n_{2} J\left(n_{1}-1, n_{2}+1\right)+n_{2} q^{2} J\left(n_{1}, n_{2}+1\right)
\end{aligned}
$$

Relation I

Taking into account the symmetry

$$
J\left(n_{1}, n_{2}\right)=J\left(n_{2}, n_{1}\right)
$$

and

$$
J\left(n_{1}, 0\right)=J\left(0, n_{2}\right)=0
$$

this relation is already enough

$$
\begin{aligned}
n_{2} q^{2} J\left(n_{1}, n_{2}+1\right)= & -\left(d-2 n_{1}-n_{2}\right) J\left(n_{1}, n_{2}\right) \\
& +n_{2} J\left(n_{1}-1, n_{2}+1\right)
\end{aligned}
$$

Outline

(1) Introduction
(2) Mathematical prelude
(3) Direct evaluation of Feynman integrals
(4) Tensor integrals
(5) Integration by parts

6 Mellin Barnes
(7) Sector decomposition
(8) Differential equations

- Asymptotic expansions

Generalized formula and why we need more tools

Consider a general L-loop integral with N internal lines with momenta q_{i} and masses m_{i} and E external lines with momenta p_{e}

$$
G_{L}=\frac{1}{\left(i \pi^{d / 2}\right)^{L}} \int \frac{\mathrm{~d}^{d} k_{1} \cdots \mathrm{~d}^{d} k_{L}}{\left(q_{1}^{2}-m_{1}^{2}\right)^{\nu_{i}} \cdots\left(q_{N}^{2}-m_{N}^{2}\right)^{\nu_{N}}}
$$

The denominators are of the form

$$
d_{i}=\left(\sum_{\ell} \alpha_{i \ell} k_{\ell}-P_{i}\right)^{2}-m_{i}^{2}=\left(\sum_{\ell} \alpha_{i \ell} k_{\ell}-\sum_{e} \beta_{i e} p_{e}\right)^{2}-m_{i}^{2}
$$

the numerator in the Feynman parameter representation before the momentum integration can thus be written in the form

$$
\mathcal{N}=\sum_{i} x_{i} d_{i}=k M k-2 k Q+J
$$

Generalized formula and why we need more tools

$$
\begin{gathered}
\mathcal{N}=\sum_{i} x_{i} d_{i}=k M k-2 k Q+J \\
M_{\ell \ell^{\prime}}=\sum_{i} x_{i} \alpha_{i \ell} \alpha_{i \ell^{\prime}} \\
Q_{\ell}=\sum_{i} x_{i} \alpha_{i \ell} P_{i} \\
J=\sum_{i} x_{i}\left(P_{i}^{2}-m_{i}^{2}\right)
\end{gathered}
$$

before we can do the momentum integration we need to diagonalize and rescale in k space. This gives rise to the determinant of M.

$$
U(x)=\operatorname{det} M
$$

Generalized formula and why we need more tools

Shifting the loop momenta to complete the square gives rise to the polynomial

$$
F(x)=-(\operatorname{det} M) J+Q \tilde{M} Q
$$

with

$$
\tilde{M}=(\operatorname{det} M) M^{-1}
$$

and we thus obtain the final Feynman parameter representation

$$
\begin{aligned}
G_{L}= & \frac{(-1)^{N_{\nu}} \Gamma\left(N_{\nu}-\frac{d}{2} L\right)}{\prod_{i} \Gamma\left(\nu_{i}\right)} \int \prod_{i} \mathrm{~d} x_{i} x_{i}^{\nu_{i}-1} \delta\left(1-\sum x_{i}\right) \\
& \times \frac{U(x)^{N_{\nu}-d(L+1) / 2}}{F(x)^{N_{\nu}-d L / 2}}
\end{aligned}
$$

Note: $U(x)=1$ for one-loop integrals

Generalized formula and why we need more tools

to proceed with the calculation in the next step the Feynman parameter integral

$$
\int \prod_{i} \mathrm{~d} x_{i} x_{i}^{\nu_{i}-1} \delta\left(1-\sum x_{i}\right) \times \frac{U(x)^{N_{\nu}-d(L+1) / 2}}{F(x)^{N_{\nu}-d L / 2}}
$$

has to be performed.
Problem: The polynomials in the Feynman parameters x_{i} (one variable per line of the integral) become too complicated to be integrated very fast.

Where do we go from here?

Problem: we have a completely general representation for Feynman integral properly regularized in dimensions. It can not (easily) evaluated any further.

Possible solutions?

- expand in $\epsilon=(4-d) / 2$

Where do we go from here?

Problem: we have a completely general representation for Feynman integral properly regularized in dimensions. It can not (easily) evaluated any further.

Possible solutions?

- expand in $\epsilon=(4-d) / 2$ most of the time not possible, since Feynman integrals still do not converge for $\epsilon \rightarrow 0$

Where do we go from here?

Problem: we have a completely general representation for Feynman integral properly regularized in dimensions. It can not (easily) evaluated any further.

Possible solutions?

- expand in $\epsilon=(4-d) / 2$ most of the time not possible, since Feynman integrals still do not converge for $\epsilon \rightarrow 0$
- integrate numerically

Where do we go from here?

Problem: we have a completely general representation for Feynman integral properly regularized in dimensions. It can not (easily) evaluated any further.

Possible solutions?

- expand in $\epsilon=(4-d) / 2$ most of the time not possible, since Feynman integrals still do not converge for $\epsilon \rightarrow 0$
- integrate numerically
cannot do that in d dimensions

Where do we go from here?

Problem: we have a completely general representation for Feynman integral properly regularized in dimensions. It can not (easily) evaluated any further.

Possible solutions?

- expand in $\epsilon=(4-d) / 2$ most of the time not possible, since Feynman integrals still do not converge for $\epsilon \rightarrow 0$
- integrate numerically
cannot do that in dimensions
- make the objects simpler again

Where do we go from here?

Problem: we have a completely general representation for Feynman integral properly regularized in dimensions. It can not (easily) evaluated any further.

Possible solutions?

- expand in $\epsilon=(4-d) / 2$ most of the time not possible, since Feynman integrals still do not converge for $\epsilon \rightarrow 0$
- integrate numerically
cannot do that in dimensions
- make the objects simpler again
can be done, but for a prize ...

Mellin-Barnes representation

One way relation to achieve this goal is the Mellin-Barnes representation

$$
\frac{1}{(A+B)^{\lambda}}=\frac{B^{-\lambda}}{2 \pi i \Gamma(\lambda)} \int_{-i \infty}^{i \infty} \mathrm{~d} z A^{z} B^{-z} \Gamma(-z) \Gamma(\lambda+z)
$$

the main idea being to chop the long polynomials in smaller pieces in such a way that they can be integrated over the Feynman parameters again.

Mellin-Barnes representation

One way relation to achieve this goal is the Mellin-Barnes representation
[Smirnov; Tausk]

$$
\frac{1}{(A+B)^{\lambda}}=\frac{B^{-\lambda}}{2 \pi i \Gamma(\lambda)} \int_{-i \infty}^{i \infty} \mathrm{~d} z A^{z} B^{-z} \Gamma(-z) \Gamma(\lambda+z)
$$

the main idea being to chop the long polynomials in smaller pieces in such a way that they can be integrated over the Feynman parameters again.
Note: If this relation is applied finely enough the Feynman integration is guaranteed to become doable

Mellin-Barnes representation

One way relation to achieve this goal is the Mellin-Barnes representation
[Smirnov; Tausk]

$$
\frac{1}{(A+B)^{\lambda}}=\frac{B^{-\lambda}}{2 \pi i \Gamma(\lambda)} \int_{-i \infty}^{i \infty} \mathrm{~d} z A^{z} B^{-z} \Gamma(-z) \Gamma(\lambda+z)
$$

the main idea being to chop the long polynomials in smaller pieces in such a way that they can be integrated over the Feynman parameters again.
Note: If this relation is applied finely enough the Feynman integration is guaranteed to become doable Note: This might not be the best idea ...

Mellin-Barnes representation

Very important is how the integration contour has to be chosen.

$$
\frac{1}{(A+B)^{\lambda}}=\frac{B^{-\lambda}}{2 \pi i \Gamma(\lambda)} \int_{-i \infty}^{i \infty} \mathrm{~d} z A^{z} B^{-z} \Gamma(-z) \Gamma(\lambda+z)
$$

There are left poles coming from

$$
\Gamma(\lambda+z)
$$

and right poles coming from

$$
\Gamma(-z)
$$

The integration contour has to separate these poles

Mellin-Barnes representation

$$
\Gamma(-z) \Gamma(\lambda+z)
$$

Mellin-Barnes representations: Singularities

In this approach singularities (in ϵ) arise, when for $\epsilon \rightarrow 0$ left and right poles coincide such that no valid integration contour can be chosen.

Mellin-Barnes representations: Singularities

In this approach singularities (in ϵ) arise, when for $\epsilon \rightarrow 0$ left and right poles coincide such that no valid integration contour can be chosen.

This problem can be solved by explicitly taking residues when necessary.
in the example, instead of the complicated contour shown take a straight line but explicitly include the residue of the first left pole

Mellin-Barnes representations: How to continue?

Once the optimal MB-representation has been found one can continue with one or more of the following

- further analytical manipulations: e.g. Barnes Lemmas

Mellin-Barnes representations: How to continue?

Once the optimal MB-representation has been found one can continue with one or more of the following

- further analytical manipulations: e.g. Barnes Lemmas
- preparation of a series representation and application of summation techniques
- preparation for numerical integration, e.g. MB.m

Barnes Lemmas

First Barnes Lemma

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \Gamma(a+z) \Gamma(b+z) \Gamma(c-z) \Gamma(d-z) \mathrm{d} z \\
& =\frac{\Gamma(a+c) \Gamma(a+d) \Gamma(b+c) \Gamma(b+d)}{\Gamma(a+b+c+d)}
\end{aligned}
$$

Barnes Lemmas

First Barnes Lemma

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \Gamma(a+z) \Gamma(b+z) \Gamma(c-z) \Gamma(d-z) \mathrm{d} z \\
& =\frac{\Gamma(a+c) \Gamma(a+d) \Gamma(b+c) \Gamma(b+d)}{\Gamma(a+b+c+d)}
\end{aligned}
$$

Second Barnes Lemma

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{\Gamma(a+z) \Gamma(b+z) \Gamma(c+z) \Gamma(1-d-z) \Gamma(-z)}{\Gamma(e+z)} \mathrm{d} z \\
& =\frac{\Gamma(a) \Gamma(b) \Gamma(c) \Gamma(1-d+a) \Gamma(1-d+b) \Gamma(1-d+c)}{\Gamma(e-a) \Gamma(e-b) \Gamma(e-c)}
\end{aligned}
$$

with $e=a+b+c-d+1$

Towards a series representation

If the integrand $f(z)$ of the MB integral

$$
\int_{-i \infty}^{i \infty} \mathrm{~d} z f(z)
$$

is vanishing fast enough for $|z| \rightarrow \infty$ we can close the integration contour either to the right or to the left and use the residue theorem and write

$$
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \mathrm{~d} z f(z)=\sum \operatorname{Res}(f(z))
$$

AMBRE - Automatic Mellin-Barnes Representation

AMBRE written by I. Dubovyk, J. Gluza, K. Kajda, T. Riemann, which can be obtained from the webpage http://prac.us.edu.pl/~gluza/ambre/ is a tool for the automatic construction of a good (best) MB representation.

MB.m

MB.m Mathematica package by M. Czakon

- can be used to extract poles from Mellin Barnes representations
- prepare code for numerical integration
- and run it

Caveats:

- as provided on webpage written to use f 77
- uses the old Cuba API
- needs parts of the CERNLIB

Examples: Hands on

take file from
http://www-zeuthen.desy.de//marquard/CAPP.tgz

Outline

(1) Introduction
(2) Mathematical prelude
(3) Direct evaluation of Feynman integrals
(9) Tensor integrals
(5) Integration by parts

- Mellin Barnes
(7) Sector decomposition
(8) Differential equations
(9) Asymptotic expansions

Recap

We derived the Feynman parameter representation

$$
\begin{aligned}
G_{L}= & \frac{(-1)^{N_{\nu}} \Gamma\left(N_{\nu}-\frac{d}{2} L\right)}{\prod_{i} \Gamma\left(\nu_{i}\right)} \int \prod_{i} \mathrm{~d} x_{i} x_{i}^{\nu_{i}-1} \delta\left(1-\sum x_{i}\right) \\
& \times \frac{U(x)^{N_{\nu}-d(L+1) / 2}}{F(x)^{N_{\nu}-d L / 2}}
\end{aligned}
$$

where $U(x)$ and $F(x)$ are homogeneous functions of x_{i} of degree L and $L+1$, respectively.

For euclidean kinematics $F(x)$ is positive semi definite and we only have to deal with end-point singularities.
The sector decomposition approach can be used to disentangle overlapping singularities.

Primary sectors

Let us set $\nu_{i}=1$

$$
\int_{0}^{1} \prod_{i} \mathrm{~d} x_{i} \delta\left(1-\sum x_{i}\right) \frac{U(x)^{N_{\nu}-d(L+1) / 2}}{F(x)^{N_{\nu}-d L / 2}}
$$

First step is to integrate over the delta function
To do this split the integration into n parts to get the primary sectors G_{ℓ}

$$
\int \mathrm{d}^{n} x=\int \mathrm{d}^{n} x \prod \theta\left(x_{i} \geq 0\right)=\sum_{\ell} \int \mathrm{d}^{n} x \prod_{i \neq \ell} \theta\left(x_{\ell} \geq x_{i} \geq 0\right)
$$

explicit for 2 variables

$$
\int \mathrm{d} x_{1} \mathrm{~d} x_{2}=\int \mathrm{d} x_{1} \mathrm{~d} x_{2} \theta\left(x_{1} \geq x_{2} \geq 0\right)+\int \mathrm{d} x_{1} \mathrm{~d} x_{2} \theta\left(x_{2} \geq x_{1} \geq 0\right)
$$

Primary sectors

In each primary sector G_{ℓ} do the variable transformation

$$
x_{j}= \begin{cases}x_{\ell} t_{j} & j<\ell \\ x_{\ell} & j=\ell \\ x_{\ell} t_{j-1} & j>\ell\end{cases}
$$

Then due to the homogeneity x_{ℓ} factors out and

$$
F_{\ell}(x) \rightarrow F_{\ell}(t) x_{\ell}^{L+1}, \quad U_{\ell}(x) \rightarrow U_{\ell}(t) x_{\ell}^{L}
$$

doing the integration over x_{ℓ} to eliminate the δ-function gives for each primary sector

$$
G_{\ell}=\int_{0}^{1} \prod_{i=1}^{N-1} \mathrm{~d} t_{i} \frac{U_{\ell}(t)^{N_{\nu}-d(L+1) / 2}}{F_{\ell}(t)^{N_{\nu}-d L / 2}}
$$

Iterated sector decomposition

There are many strategies to do the actual sector decomposition. I follow here the original version by Binoth and Heinrich
(1) Determine a minimal set of parameters, say $S=\left\{t_{\alpha_{1}, \ldots, t_{\alpha_{r}}}\right\}$, such that U_{ℓ}, respectively F_{ℓ}, vanish if the parameters of S are set to zero.
(2) Decompose the corresponding r-cube into r subsectors.

$$
\prod_{j=1}^{r} \theta\left(1 \geq t_{\alpha_{j}} \geq 0\right)=\sum_{k=1}^{r} \prod_{j \neq k} \theta\left(1 \geq t_{\alpha_{k}} \geq t_{\alpha_{j}} \geq 0\right)
$$

(3) remap to the unit cube in each subsector

$$
t_{\alpha_{j}} \rightarrow \begin{cases}t_{\alpha_{k}} t_{\alpha_{j}}, & j \neq k \\ t_{\alpha_{j}}, & j=k\end{cases}
$$

$t_{\alpha_{k}}$ factors from $U(t)$ and/or $F(t)$ and we get the form

$$
G_{\ell k}=\int_{0}^{1} \prod^{N-1} \mathrm{~d} t_{i}\left(\prod t_{j}^{A_{j}-B_{j} \epsilon}\right) \frac{U_{\ell k}(t)^{N_{\nu}-d(L+1) / 2}}{F_{\ell k}(t)^{N_{\nu}-d L / 2}}
$$

Extraction of poles

After the sector decomposition is complete we are left with expressions of the form

$$
I_{j}=\int \mathrm{d} t_{j} t_{j}^{A_{j}-B_{j} \epsilon} \mathcal{I}\left(t_{j}, \epsilon\right)
$$

if $A_{j} \geq 0$ we do not get a pole in ϵ from the t integration otherwise we expand $\mathcal{I}\left(t_{j}, \epsilon\right)$ around $t_{j}=0$

$$
\mathcal{I}\left(t_{j}, \epsilon\right)=\sum_{p=0}^{\left.\mid A_{j}\right]-1} \mathcal{I}_{j}^{(p)}(0, \epsilon) \frac{t_{j}^{p}}{p!}+R\left(t_{j}, \epsilon\right)
$$

and obtain for the integral

$$
I_{j}=\sum_{p=0}^{\left.\mid A_{j}\right]-1} \frac{1}{\left|A_{j}\right|+p+1-B_{j} \epsilon} \frac{\mathcal{I}_{j}^{(p)}(0, \epsilon)}{p!}+\int_{0}^{1} \mathrm{~d} t_{j} t_{j}^{A_{j}-B_{j} \epsilon} R\left(t_{j}, \epsilon\right)
$$

Example: one-loop triangle

Let us look at the one-loop triangle with propagators

$$
\left\{-k^{2},-\left(k+p_{1}\right)^{2}-M^{2},-\left(k+p_{2}\right)^{2}-M^{2}\right\}, p_{1}^{2}=p_{2}^{2}=0
$$

we have the U and F polynomials

$$
U(x)=x_{1}+x_{2}+x_{3}, F(x)=s x_{3} x_{2}+x_{2}^{2}+x_{1} x_{2}+2 x_{3} x_{2}+x_{3}^{2}+x_{1} x_{3}
$$

Example: one-loop triangle

To obtain the first primary sector we use the rules

$$
\left\{x_{1} \rightarrow x_{1}, x_{2} \rightarrow t_{1} x_{1}, x_{3} \rightarrow t_{2} x_{1}\right\}
$$

integrate over the delta function and obtain the new polynomials

$$
U_{1}(t)=t_{1}+t_{2}+1, F_{1}(t)=s t_{2} t_{1}+t_{1}^{2}+2 t_{2} t_{1}+t_{1}+t_{2}^{2}+t_{2}
$$

$F(t)$ vanishes for $t_{1}, t_{2} \rightarrow 0 \Rightarrow$ we get 2 subsectors

Example: one-loop triangle

We get the 2 subsectors by the transformations $t_{2} \rightarrow t_{1} t_{2}$ and $t_{1} \rightarrow t_{1} t_{2}$, respectively.

$$
\begin{aligned}
& U_{1,1}=s t_{1} t_{2}+t_{1} t_{2}^{2}+2 t_{1} t_{2}+t_{2}+t_{1}+1 \\
& U_{1,2}=s t_{2} t_{1}+t_{2} t_{1}^{2}+2 t_{2} t_{1}+t_{1}+t_{2}+1
\end{aligned}
$$

both are now positive and we can stop here
primary sectors 2 and 3 have no subsectors
all singularities in the Feynman parameter integration are now made explicit

$$
\int_{0}^{1}\left(\prod_{j} t_{j}^{A_{j}-B_{j} \epsilon}\right) f(t)
$$

and $f(t)$ is free of singularities

Non-Euclidean kinematics

- If we are not in the Euclidean region $\left(s_{i j}<0\right)$ the F-polynomial is no longer positive semi definite, but changes sign inside the domain of integration. Leading to (integrable) singularities.
- A necessary condition are the Landau equations

$$
\begin{aligned}
x_{j}\left(q_{j}^{2}-m_{j}^{2}\right) & =0 \quad \forall j \\
\frac{\partial}{\partial k^{\mu}} \sum_{j} x_{j}\left(q_{j}^{2}(k, p)-m_{j}^{2}\right) & =0
\end{aligned}
$$

- if there is a solution $x_{i}>0$ for the Landau equations, we have the leading Laudau singularity, which is not integrable
- To make these (integration) contour deformation [Borowka, Heinrich] $\mathbf{c a n}$ be used.

Contour deformation

- Reparametrize the integration path

$$
\int_{0}^{1} \prod_{j=1}^{N} \mathrm{~d} x_{j} \mathcal{I} x=\int_{0}^{1} \prod_{j=1}^{N} \mathrm{~d} x_{j}\left|\left(\frac{\partial z_{k}(x)}{\partial x_{I}}\right)\right| \mathcal{I}(z(x))
$$

- a convenient choice is

$$
\begin{aligned}
\vec{z}(\vec{x}) & =\vec{x}-i \vec{\tau}(\vec{x}) \\
\tau_{k} & =\lambda x_{k}\left(1-x_{k}\right) \frac{\partial F(\vec{x})}{\partial x_{k}}
\end{aligned}
$$

- F expressed in the new variables

$$
F(\vec{z}(\vec{x}))=F(\vec{x})-i \lambda \sum_{j} x_{l}\left(1-x_{j}\right)\left(\frac{\partial F}{\partial x_{j}}\right)^{2}+\mathcal{O}\left(\lambda^{2}\right)
$$

Tools

The method of sector decomposition has been implemented in several tools

- FIESTA (http://git.sander.su/fiesta)
- SecDec (https://secdec.hepforge.org/)
[Borowka, Heinrich, Jones, Kerner, Schlenk, Zirke]
- SectorDecomposition (http://wwwthep.physik.unimainz.de/־stefanw/sector_decomposition/)

Hands on FIESTA

FIESTA either as complete package from

http://git.sander.su/fiesta

or just the main Mathematica file from
http://www.zeuthen.desy.de//marquard/CAPP/

Outline

(9) Introduction
(3) Mathematical prelude
(3) Direct evaluation of Feynman integrals
(4) Tensor integrals
(5) Integration by parts

- Mellin Barnes
(7) Sector decomposition
(8) Differential equations
(9) Asymptotic expansions

Recap of IBP identities

IBP identities are very useful because they allow us to express any integral l_{j} as linear combination of master integrals M_{i}

$$
I_{j}=\sum_{i} c_{j i}\left(d, m_{i}, s_{i j}\right) M_{i}
$$

The set of master integrals is obtain by exploiting all available IBP identities (and possibly also symmetry relations). The number of master integral is fixed but there is a freedom to choose the integrals. The idea is of course to reduce more complicated integrals, i.e. more lines, more dots, to simpler ones, i.e. fewer lines, fewer dots.

Differential equations

Feynman integrals are functions of masses and kinematical variables

$$
I\left(m_{i}, s_{i j}\right)
$$

As such one can try to find a differential equation for the integral, e.g.

$$
\frac{\partial}{\partial z} l\left(m_{i}, s_{i j}\right)=f\left(m_{i}, s_{i j}\right) l\left(m_{i}, s_{i j}\right)+R\left(m_{i}, s_{i j}\right), \quad\left\{m_{i}, s_{i j}\right\}
$$

and find a solution for it.

Construction of the differential equation

One way to construct the differential equation is by means of a master formula

$$
\mathcal{D} I\left(m_{i}, s_{i j}\right)=2\left(m_{i}^{2} \frac{\partial}{\partial m_{i}^{2}}+s_{i j} \frac{\partial}{\partial s_{i j}}\right) I\left(m_{i}, s_{i j}\right)
$$

where \mathcal{D} denotes the mass dimension of the integral. m_{i} and $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$ denote internal masses and kinematical variables, respectively.

In the simple case of one mass parameter m and one kinematic one q^{2} this turns into

$$
\mathcal{D} I\left(m, q^{2}\right)=2\left(m^{2} \frac{\partial}{\partial m^{2}}+q^{2} \frac{\partial}{\partial q^{2}}\right) I\left(m, q^{2}\right)
$$

Construction of the differential equation

$$
\mathcal{D} I\left(m, q^{2}\right)=2\left(m^{2} \frac{\partial}{\partial m^{2}}+q^{2} \frac{\partial}{\partial q^{2}}\right) I\left(m, q^{2}\right)
$$

the derivative with respect to m^{2} can be taken directly leading to integrals with raised powers of propagators and we remain only with the differential with respect to q^{2}.

Now we can use IBP-relations to rewrite the new integrals in terms of the original one.
Thus, we obtain a differential equation for the integral

System of differential equation

In general, there is more than one master integral that we want to calculate. Thus we get a system of coupled differential equations.

$$
\frac{\partial}{\partial z} l_{j}(z, d)=C_{j}(z, d) l_{j}+\sum_{k \neq j} D_{j k} I_{k}(z, d)
$$

The integrals in the inhomogeneity are by construction at most as complicated as the integral we are looking at. In the best case they are all simpler than the original one. In the worst case we obtain a system of coupled differential equation within a sector, i.e. involving integrals where the same lines have positive powers.

Solving the differential equation

A first-order differential equation can be solved by using the method "variation of constants".
Consider the first-order differential equation

$$
\frac{\partial}{\partial z} f(z)=a(z) f(z)+b(z)
$$

then

$$
\tilde{f}(z)=C e^{A(z)}, \text { with } A(z)=\int \mathrm{d} z a(z)
$$

is a solution of the homogeneous equation and

$$
f(z)=e^{A(z)}\left(\int_{z_{0}}^{z} b\left(z^{\prime}\right) e^{-A\left(z^{\prime}\right)} \mathrm{d} z^{\prime}+C\right)
$$

a solution of the inhomogeneous equation.

Solving the system of differential equation

In practice, it is best to first perform the expansion in $\epsilon=(4-d) / 2$ and then to solve the differential equations order by order in ϵ. Make an ansatz for the master integrals in the form

$$
I_{j}(z)=\sum_{k=-n}^{m} I_{j k}(z) \epsilon^{k}
$$

This leads to a system of coupled differential equations for the coefficients of the Laurent expansion of the master integrals.
The system of differential equations can then be solved in bottom up approach.
This approach leads naturally to iterated integrals like HPLs.
In case there are several integrals in a sector one can try to decouple them in ϵ be a suitable choice of the master integrals.

Canonical basis

It was recently proposed ${ }_{[H e n n]}$ and demonstrated that in many cases a canonical basis of master integrals can be found in which the differential equations take the form

$$
\frac{\partial}{\partial x} \vec{l}(x, \epsilon)=\epsilon A(x) \vec{l}(x, \epsilon)
$$

where A is a $n \times n$ matrix. This makes the solution of differential equations trivial. In addition the alphabet of functions can be read off from the entries of the matrix.
Furthermore, [Lee] recently proposed an algorithm how to obtain such a representation.

Outline

(9) Introduction
(2) Mathematical prelude
(3) Direct evaluation of Feynman integrals
(4) Tensor integrals
(5) Integration by parts

- Mellin Barnes
(7) Sector decomposition

8. Differential equations
(9) Asymptotic expansions

Motivation

Quite often a problem is to complex at the start to be tackled directly.
In this case it is often possible to expand in some small or large parameter to simplify the problem.

These expansions sometimes lead to more than a simple power series and more work than taking a simple Taylor series has to be done.

In general, the procedure than goes by the name of asymptotic expansion.

There are two procedures to perform an asymptotic expansion:

- expansion by regions
- expansion by subgraphs

Expansion by regions: The idea

(1) Divide the space of the loop momenta into various regions and, in every region, expand the integrand in a Taylor series with respect to the parameters that are considered small there.
(2) Integrate the integrand, expanded in the appropriate way in every region, over the whole integration domain of the loop momenta.
(3) Set to zero any scaleless integral.

The peculiar thing here is the second step since naively this could lead to double counting problems.
The problematic thing is how do we find all these regions

Example I: large momentum expansion

with the integrand $I=I_{1} I_{2}$ and the propagators

$$
I_{1}=\frac{1}{\left((k+p)^{2}\right)^{n_{1}}}=\frac{1}{\left(k^{2}+2 k \cdot p+p^{2}\right)^{n_{1}}} \quad \text { and } \quad I_{2}=\frac{1}{\left(k^{2}-m^{2}\right)^{n_{2}}}
$$

Example I: large momentum expansion

$$
I_{1}=\frac{1}{\left((k+p)^{2}\right)^{n_{1}}}=\frac{1}{\left(k^{2}+2 k \cdot p+p^{2}\right)^{n_{1}}} \quad \text { and } \quad l_{2}=\frac{1}{\left(k^{2}-m^{2}\right)^{n_{2}}}
$$

We want to consider the case where

$$
|p| \gg m
$$

What are the regions?

Example I: large momentum expansion

$$
I_{1}=\frac{1}{\left((k+p)^{2}\right)^{n_{1}}}=\frac{1}{\left(k^{2}+2 k \cdot p+p^{2}\right)^{n_{1}}} \quad \text { and } \quad l_{2}=\frac{1}{\left(k^{2}-m^{2}\right)^{n_{2}}}
$$

We want to consider the case where

$$
|p| \gg m
$$

What are the regions?
We find the following
hard region (h) $k \sim p$
soft region (s) $k \sim m$

Example I: hard region

In the hard region we have $k \sim p$ so

$$
m^{2} \ll k^{2} \sim k \cdot p \sim p^{2}
$$

so I_{1} remains untouched and in I_{2} we perform an expansion in $\mathrm{m}^{2} / \mathrm{k}^{2}$

$$
I_{2} \rightarrow T^{(h)} I_{2} \equiv \sum_{j} T_{j}^{(h)} I_{2}=\sum_{j=0}^{\infty} \frac{\left(n_{2}\right)_{j}}{j!} \frac{\left(m^{2}\right)^{j}}{\left(k^{2}\right)^{n_{2}+j}}
$$

and we obtain a massless propagator

$$
\int \mathrm{d}^{d} k \frac{1}{(k+q)^{2}\left(k^{2}\right)^{n}}
$$

Example I: soft region

In the soft region we have $k \sim m$ so

$$
\left|k^{2}\right| \ll\left|p^{2}\right|,|2 k \cdot p| \ll\left|p^{2}\right|
$$

now I_{2} is untouched and we have to expand I_{1}

$$
\iota_{1} \rightarrow T^{(s)} l_{1} \equiv \sum_{j} T_{j}^{(s)} \iota_{1} \equiv \sum_{j_{1}, j_{2}} T_{j_{1}, j_{2}}^{(s)} I_{1}=\sum_{j_{1}, j_{2}=0}^{\infty} \frac{\left(n_{1}\right)_{j_{12}}}{j_{1}!j_{2}!} \frac{\left(-k^{2}\right)^{j_{1}}(-2 k \cdot p)^{j_{2}}}{\left(p^{2}\right)^{n_{1}+j_{12}}}
$$

In this region we end with massive tadpoles

$$
\int \mathrm{d}^{d} k \frac{k \cdot p^{n}}{k^{2}-m^{2}}
$$

Example II: On-shell integrals

Consider the typical on-shell integral $\left(q^{2}=M^{2}\right)$

$$
\int \mathrm{d} k^{d} \mathrm{~d} l^{d} \frac{1}{\left(k^{2}+2 k \cdot q\right) k^{4}\left((k-l)^{2}-m^{2}\right)\left(I^{2}-m^{2}\right)}
$$

we get the regions

- $k^{2}, I^{2} \approx M^{2}$: expand in $m^{2} \rightarrow$ massless on-shell propagator
- $k^{2} \approx M^{2}, I^{2} \approx m^{2}$: one-loop on-shell \times massive tadpole
- $k^{2}, l^{2} \approx m^{2}$: expand in $k^{2} \rightarrow$ new class of diagrams

$$
\int \mathrm{d}^{2} k \mathrm{~d}^{d} l \frac{1}{(k \cdot q) k^{4}\left((k-l)^{2}-m^{2}\right)\left(I^{2}-m^{2}\right)}
$$

Tools for asymptotic expansions

To help with finding the regions of a Feynman integrals the Mathematica programs

- asy.m
[Pak, Smirnov]
- asy2.m
are useful.
Both programs are based on the program Qhull.

One last example: how everything fits together

Consider the anomalous magnetic moment of the muon $g-2=a_{\mu}$

$$
=(-i e) \bar{u}\left(p_{2}\right)\left\{\gamma^{\mu} F_{E}\left(q^{2}\right)+i \frac{\sigma^{\mu \nu} q^{\nu}}{2 m} F_{M}\left(q^{2}\right)\right\} u\left(p_{1}\right)
$$

$$
a_{\mu}=F_{M}(0)
$$

One last example: how everything fits together

Consider the anomalous magnetic moment of the muon $g-2=a_{\mu}$

$$
=(-i e) \bar{u}\left(p_{2}\right)\left\{\gamma^{\mu} F_{E}\left(q^{2}\right)+i \frac{\sigma^{\mu \nu} q^{\nu}}{2 m} F_{M}\left(q^{2}\right)\right\} u\left(p_{1}\right)
$$

$$
a_{\mu}=F_{M}(0)
$$

To obtain $F_{M}(0)$ use a suitable projector

4-loop contribution

The calculation

- generate the diagrams
- map the diagrams to $\mathcal{O}(100)$ diagram classes
- use (T/P)FORM to apply the projector, expand, and do the algebra
- reduce the appearing integrals to $\mathcal{O}(500)$ master integrals using IBPs
- calculated the masters using Mellin-Barnes techniques (simpler ones) or sector decomposition (more complicated ones)
- add everything up, do the renormalization and hope for the best.

Thanks a lot for your attention

