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Abstract

We present analytic formulae for the QCD renormalization group factors relating the Wilson
coefficients Ci(µt) and Ci(µ), with µt = O(mt) and µ < µt, of the ∆F = 2 dimension six four-
quark operators Qi in the Standard Model and in all of its extensions. Analogous analytic
formulae for the QCD factors relating the matrix elements 〈Qi(2 GeV)〉 and 〈Qi(µK)〉 with
µK < 2 GeV are also presented. The formulae are given in the NDR scheme. The strongest
renormalization-group effects are found for the operators with the Dirac structures (1 − γ5) ⊗
(1+γ5) and (1−γ5)⊗(1−γ5). We calculate the matrix elements 〈K0|Qi|K0〉 in the NDR scheme
using the lattice results in the LRI scheme. We give expressions for the mass differences ∆MK

and ∆MB and the CP-violating parameter ǫK in terms of the non-perturbative parameters
Bi and the Wilson coefficients Ci(µt). The latter summarize the dependence on new physics
contributions.
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1 Introduction

Renormalization group short-distance QCD effects play an important role in K0 − K
0

and

B0
d,s − B

0
d,s mixing within the Standard Model (SM) and its extensions [1, 2]. They can be

calculated by solving renormalization group equations that govern the scale dependence of the

Wilson coefficients Ci(µ) of the relevant ∆F = 2 operators Qi. The resulting effective weak

Hamiltonian reads

H∆F=2
eff =

G2
F

16π2
M2

W

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and V i
CKM the Cabibbo-Kobayashi-Maskawa (CKM) factor equal

to (V ∗

tbVtd)
2 in the case of B0

d − B
0
d mixing in the SM. Beyond the SM other factors not pro-

portional to CKM elements are generally present. Using this Hamiltonian one can calculate

∆F = 2 amplitudes, in particular the mass differences ∆MK and ∆Md,s in the K0 − K
0

and

B0
d,s − B

0
d,s systems and the CP-violating parameter εK .

Within the SM there is only one single operator

QVLL
1 = (s̄αγµPLdα)

(

s̄βγµPLdβ
)

(1.2)

relevant for K0 − K
0

mixing, with analogous operators for B0
d,s − B

0
d,s mixing obtained from

(1.2) through the appropriate change of flavours. Beyond the SM the full set of dimension

six operators contributing to K0 − K
0

mixing consists of 8 operators that can be split into 5

separate sectors according to the chirality of the quark fields they contain. These operators are

listed in (2.1). Corresponding operators contributing to B0
d,s − B

0
d,s mixing exist.

The general expression for Ci(µ) is given by

~C(µ) = Û(µ, µt) ~C(µt) (1.3)

where ~C is a column vector built out of the Ci’s and Û(µ, µt) is the renormalization group

matrix. ~C(µt), with µt = O(mt), are the initial conditions which depend on the short distance

physics at high energy scales. In particular they depend on the top quark mass and the

couplings and masses of new particles in extensions of the SM. We will later briefly discuss the
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case of scales much higher than mt. Otherwise µt denotes a high energy scale in the range, say,

MW ≤ µt ≤ 2mt.

While the initial conditions Ci(µt) at the NLO level are known only in the SM [3, 4] and in

some of its extensions [4], all the ingredients are available to compute the NLO evolution matrix

Û(µ, µt) for all possible extensions of the SM. Indeed, the two-loop anomalous dimension matrix

for all ∆F = 2 four-quark dimension six operators has been calculated in the regularization

independent renormalization scheme (RI) in [5] and in the NDR scheme in [6]. Together with

the known one-loop anomalous dimension matrix [7, 8] and the known β function, the evolution

matrix can be straightforwardly computed by means of the methods reviewed in [1, 2].

The LO analytic expressions for Û(µ, µt) can be found in [8]. For phenomenological appli-

cations it is useful to derive analogous expressions including NLO corrections. The first step in

this direction has been made in [9] where Û(µ, µs) with µs > mt has been written as

Û(µ, µs) = Û(µ, µt)Û(µt, µs) (1.4)

with Û(µt, µs) given analytically in the Landau RI scheme (LRI) but Û(µ, µt) evaluated nu-

merically for µ = 2 GeV, µt = mt and particular values of mc, mb and αs. The corresponding

results for B0
d,s − B

0
d,s mixing have not been presented in [9].

It should be emphasized that NLO corrections are necessary for a satisfactory matching of

the Wilson coefficients to the matrix elements obtained from lattice calculations. Moreover

as demonstrated in [8, 9] the inclusion of QCD corrections at the LO and the NLO level is

mandatory in order to place reliable constraints on the parameters in the extensions of the SM,

in particular on the squark mass matrices in supersymmetric theories.

The purpose of our paper is to present NLO analytic formulae for the matrix Û(µ, µt) relevant

for B0
d,s −B

0
d,s mixing (µ = O(mb)), and K0 −K

0
mixing (µ = O(1− 2 GeV)). These formulae

when combined with the initial conditions ~C(µt) and the hadronic matrix elements 〈 ~Q(µ)〉 will

allow to calculate in the future the ∆F = 2 amplitudes for any extension of the SM.

The formulae given below for Û(µ, µt) apply to the situation in which the initial conditions

for the Wilson coefficients are known at µt = O(mt) and the evolution down to scales µ < µt

is performed in an effective theory with the top quark and the heavy new particles integrated
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out. Whether the top quark and the new particles have been integrated out at a single scale

µt or at different scales, say µt, µs1, µs2 with µt < µs1 < µs2, is immaterial here. What matters

are the values of the Wilson coefficients at µt and not how they have been evaluated from the

contributions at scales higher than µt. On the other hand in the process of the evaluation

of Ci(µt) large logarithms log µs1/µt, log µs2/µs1 may appear. These logarithms have to be

resummed which results in new evolution functions Û(µt, µs1), Û(µs1, µs2), etc. As discussed in

[8, 9] the structure of these matrices is model dependent and consequently beyond the scope

of the present paper. We will, however, provide an analytic formula for the evolution Û(µt, µs)

with µt ≪ µs in an effective f = 6 theory in which only SM degrees of freedom are present and

all new particles have been integrated out.

Now, the lattice results for the matrix elements 〈 ~Q(µ)〉 are usually given at µ = 2 GeV. In

what follows we will denote this scale by µL. On the other hand large-N approaches, the chiral

quark model and any non-perturbative method in which the low-energy degrees of freedom are

mesons provide these matrix elements at scales µK ≤ 1GeV. In our opinion it would be useful

to have the matrix elements obtained by means of different methods at a common “standard”

scale, which we will choose to be µL in the following. This is achieved using the formula

〈 ~Q(µL)〉 = ÛT (µK , µL)〈 ~Q(µK)〉 (1.5)

where 〈 ~Q(µK)〉 are the matrix elements calculated for scales µK < µL and Û(µK , µL) is

the renormalization group evolution matrix. In our paper we provide analytic formulae for

Û(µK , µL).

At this point we would like to stress that our paper is addressed first of all to the practitioners

of weak decays who do not want to get involved with the details of NLO calculations but

rather would like to use the final QCD factors in phenomenological applications. On the other

hand it should also be useful to experts. Indeed, having explicit analytic formulae, rather than

numerical values, not only gives the freedom to change input parameters but also makes possible

the checking of a given calculation. In particular when multiplying the Û matrices like in (1.4)

one easily generates higher-order terms in αs which really do not belong to NLO corrections.

While these corrections should be removed from NLO expressions, this is not always done in
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the literature. Consequently, already at this stage unnecessary discrepancies of the order of

5% between calculations performed by different groups may arise. These higher-order terms in

αs are consistently removed in the present paper. We are aware of the fact that some of the

formulae presented below are rather long. Nevertheless we believe that they should turn out

to be useful in future phenomenological applications.

The paper is organized as follows. In Section 2 we give the list of the ∆F = 2 operators

in question and establish our notation. In Section 3 we give analytic formulae for the QCD

factors [ηij(µ)]a that represent the evolution matrix Û(µ, µt) in (1.3) in five different sectors,

a = (VLL, LR, SLL, VRR, SRR), in the leading order (LO) and the next-to-leading (NLO)

approximation in the NDR scheme. In Section 4 we give the analogous formulae for the QCD

factors [ρij(µK)]a which represent the evolution matrix Û(µK , µL) in (1.5). In Section 5 we

provide numerical results for [ηij(µ)]a and [ρij(µ)]a in the NDR scheme. In section 6 we dis-

cuss the transformation rules for obtaining the corresponding results in other renormalization

schemes and we present the relation between the QCD factors calculated here and the QCD

factors ηB and η2 used in phenomenological applications. In Section 7 we calculate the matrix

elements 〈K0|Qi|K0〉 in the NDR scheme using the lattice results in the LRI scheme [9, 10].

We give general expressions for the mass differences ∆MK and ∆MB and the CP-violating pa-

rameter ǫK in terms of the non-perturbative parameters Ba
i and the Wilson coefficients Ci(µt).

We conclude in Section 8. For completeness we list in appendix A the one-loop and two-loop

anomalous dimension matrices that we have used in our paper. Appendix B gives the general

formulae for the Û matrices which have been used to obtain the analytic formulae of sections 3

and 4. Finally in Appendix C we give analytic formulae for the evolution matrix Û(µt, µs).

2 Basic Formulae

For definiteness, we will give explicit expressions for the operators responsible for the K0 −K
0

mixing. The operators belonging to the VLL, LR and SLL sectors read

QVLL
1 = (s̄αγµPLdα)(s̄βγµPLdβ),
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QLR
1 = (s̄αγµPLdα)(s̄βγµPRdβ),

QLR
2 = (s̄αPLdα)(s̄βPRdβ),

QSLL
1 = (s̄αPLdα)(s̄βPLdβ),

QSLL
2 = (s̄ασµνPLdα)(s̄βσµνPLdβ), (2.1)

where α, β are colour indices, σµν = 1
2
[γµ, γν ] and PL,R = 1

2
(1∓γ5). The operators belonging to

the two remaining sectors (VRR and SRR) are obtained from QVLL
1 and QSLL

i by interchang-

ing PL and PR. Since QCD preserves chirality, there is no mixing between different sectors.

Moreover, the anomalous dimension matrices and the evolution matrices in the VRR and SRR

sectors are the same as in the VLL and SLL sectors, respectively. Therefore, in the following,

we shall consider only the VLL, LR and SLL sectors. However, one should remember that the

initial conditions Ci(µt) are generally changed when PL and PR are interchanged. The oper-

ators in the case of B0
d − B

0
d mixing are obtained from (2.1) through the replacement s → b.

Performing the subsequent replacement d → s gives the operators contributing to B0
s − B

0
s

mixing. The one-loop and two-loop anomalous dimension matrices of the operators (2.1) are

given in appendix A.

Restricting the discussion to the VLL, LR and SLL sectors Û(µ1, µ2) takes the following

form

Û(µ1, µ2) =







[η(µ1, µ2)]VLL 0 0
0 [η̂(µ1, µ2)]LR 0
0 0 [η̂(µ1, µ2)]SLL





 (2.2)

where [η̂(µ1, µ2)]LR and [η̂(µ1, µ2)]SLL are 2 × 2 matrices and µ1 < µ2. In what follows we will

use a short-hand notation, denoting the QCD factors representing Û(µ, µt) and Û(µK , µL) by

[η̂(µ, µt)]a ≡ [η̂(µ)]a =
[

η̂(0)(µ)
]

a
+

α(f)
s (µ)

4π

[

η̂(1)(µ)
]

a
, (2.3)

[ρ̂(µK , µL)]a ≡ [ρ̂(µK)]a =
[

ρ̂(0)(µK)
]

a
+

α(3)
s (µK)

4π

[

ρ̂(1)(µK)
]

a
, (2.4)

respectively. That is, we will suppress the high-energy scale µt in the argument of the η-factors.

Similarly, we will suppress the “lattice scale” µL in the argument of the ρ-factors. Using this
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notation we have for instance

CVLL
1 (µb) = [η(µb)]VLL CVLL

1 (µt), (2.5)

(

CLR
1 (µb)

CLR
2 (µb)

)

=

(

[η11(µb)]LR [η12(µb)]LR

[η21(µb)]LR [η22(µb)]LR

)(

CLR
1 (µt)

CLR
2 (µt)

)

, (2.6)

〈QVLL
1 (µL)〉 = [ρ(µK)]VLL 〈QVLL

1 (µK)〉, (2.7)

(

〈QLR
1 (µL)〉

〈QLR
2 (µL)〉

)

=

(

[ρ11(µK)]LR [ρ21(µK)]LR

[ρ12(µK)]LR [ρ22(µK)]LR

)(

〈QLR
1 (µK)〉

〈QLR
2 (µK)〉

)

(2.8)

and analogous formulae for the SLL sector. Note that in accordance with (1.5), the transpose

of [ρ̂(µK)]LR enters the transformation (2.8).

In Section 3 we will give analytic formulae for the LO factors
[

η(0)(µ)
]

VLL
,
[

η
(0)
ij (µ)

]

LR
,

[

η
(0)
ij (µ)

]

SLL
and the NLO factors

[

η(1)(µ)
]

VLL
,
[

η
(1)
ij (µ)

]

LR
,
[

η
(1)
ij (µ)

]

SLL
. The corresponding

expressions for the ρ-factors are given in Section 4. α(f)
s (µ) is the QCD coupling constant in an

effective theory with f flavours: f = 5 for µb < µ < µt, f = 4 for µc < µ < µb, and f = 3 for

µ < µc, where µt = O(mt), µb = O(mb) and µc = O(mc). We impose the continuity relations

α(3)
s (µc) = α(4)

s (µc), α(4)
s (µb) = α(5)

s (µb) . (2.9)

The general expression for α(f)
s reads

α(f)
s (µ)

4π
=

1

β0 ln
(

µ2/Λ
(f)

MS

2
) − β1

β3
0

ln ln
(

µ2/Λ
(f)

MS

2
)

ln2
(

µ2/Λ
(f)

MS

2
) (2.10)

with

β0 = 11 − 2

3
f, β1 = 102 − 38

3
f. (2.11)

Λ
(f)

MS
is the QCD scale parameter in a theory with f quark flavours [11]. The exist-

ing analyses of high energy processes give α
(5)

MS
(MZ) = 0.118 ± 0.003 [12] or equivalently

Λ
(5)

MS
= (226

+41
−36

)MeV.

The evolution matrix, Û(µ, µt), is given as follows:

Û(µ, µt) = Tg exp

[

∫ g(µ)

g(µt)
dg′

γ̂T (g′)

β(g′)

]

(2.12)
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with g denoting the QCD effective coupling constant and Tg an ordering operation defined in

[1]. β(g) governs the evolution of g and γ̂ is the anomalous dimension matrix of the operators

involved.

We also have

Û(µK , µt) = Û(µK , µc)Û(µc, µb)Û(µb, µt) (2.13)

with the three factors on the r.h.s. evaluated in f = 3, f = 4 and f = 5 effective theories,

respectively. Now,

Û(µL, µt) = Û(µL, µb)Û(µb, µt), Û(µK , µt) = Û(µK , µL)Û(µL, µt). (2.14)

This means that knowing ηij(µL) and ρij(µK) allows to calculate ηij(µK).

Keeping the first two terms in the expansions of γ̂(g) and β(g) in powers of g

γ̂(g) = γ̂(0) αs

4π
+ γ̂(1)

(

αs

4π

)2

, β(g) = −β0
g3

16π2
− β1

g5

(16π2)2
, (2.15)

inserting these expansions into (2.12) and (2.13) and expanding in αs one can calculate the η-

and ρ-factors defined in (2.3) and (2.4), respectively. To this end, one has to remove terms

O(α2
s) and higher-order terms. We discuss this point in appendix B where the expansions of

Û(µ, µt) for µ = µb, µ = µL and µ = µK are given.

3 η-Factors in the NDR Scheme

3.1 η-Factors for B0

d,s − B
0

d,s mixing

VLL-Sector

[

η(0)(µb)
]

VLL
= η

6/23
5 , (3.1)

[

η(1)(µb)
]

VLL
= 1.6273(1 − η5)η

6/23
5 . (3.2)

LR-Sector

[

η
(0)
11 (µb)

]

LR
= η

3/23
5 , (3.3)

[

η
(0)
12 (µb)

]

LR
= 0, (3.4)
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[

η
(0)
21 (µb)

]

LR
=

2

3
(η

3/23
5 − η

−24/23
5 ), (3.5)

[

η
(0)
22 (µb)

]

LR
= η

−24/23
5 , (3.6)

[

η
(1)
11 (µb)

]

LR
= 0.9250 η5

−24/23 + η5
3/23 (−2.0994 + 1.1744 η5) , (3.7)

[

η
(1)
12 (µb)

]

LR
= 1.3875

(

η5
26/23 − η5

−24/23
)

, (3.8)
[

η
(1)
21 (µb)

]

LR
= (−11.7329 + 0.7829 η5) η5

3/23 + η5
−24/23 (−5.3048 + 16.2548 η5) , (3.9)

[

η
(1)
22 (µb)

]

LR
= (7.9572 − 8.8822 η5) η5

−24/23 + 0.9250 η5
26/23. (3.10)

SLL-Sector
[

η
(0)
11 (µb)

]

SLL
= 1.0153η−0.6315

5 − 0.0153η0.7184
5 , (3.11)

[

η
(0)
12 (µb)

]

SLL
= 1.9325(η−0.6315

5 − η0.7184
5 ), (3.12)

[

η
(0)
21 (µb)

]

SLL
= 0.0081(η0.7184

5 − η−0.6315
5 ), (3.13)

[

η
(0)
22 (µb)

]

SLL
= 1.0153η0.7184

5 − 0.0153η−0.6315
5 , (3.14)

[

η
(1)
11 (µb)

]

SLL
= (4.8177 − 5.2272 η5) η5

−0.6315 + (0.3371 + 0.0724 η5) η5
0.7184, (3.15)

[

η
(1)
12 (µb)

]

SLL
= (9.1696 − 38.8778 η5) η5

−0.6315 + (42.5021 − 12.7939 η5) η5
0.7184, (3.16)

[

η
(1)
21 (µb)

]

SLL
= (0.0531 + 0.0415 η5) η5

−0.6315 − (0.0566 + 0.0380 η5) η5
0.7184, (3.17)

[

η
(1)
22 (µb)

]

SLL
= (0.1011 + 0.3083 η5) η5

−0.6315 + η5
0.7184 (−7.1314 + 6.7219 η5) , (3.18)

where

η5 ≡
α(5)

s (µt)

α
(5)
s (µb)

. (3.19)

3.2 η-Factors for K0 − K
0

mixing with µ = µL

These factors are relevant for K0 − K
0

mixing but can also be used in D0 − D
0

mixing. They

can be expressed in terms of η5 defined in (3.19) and

η4 ≡
α(4)

s (µb)

α
(4)
s (µL)

. (3.20)

VLL-Sector
[

η(0)(µL)
]

VLL
= η

6/25
4 η

6/23
5 , (3.21)

[

η(1)(µL)
]

VLL
= η

6/25
4 η

6/23
5 (1.7917 − 0.1644η4 − 1.6273η4η5). (3.22)
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LR-Sector

[

η
(0)
11 (µL)

]

LR
= η

3/25
4 η

3/23
5 , (3.23)

[

η
(0)
12 (µL)

]

LR
= 0, (3.24)

[

η
(0)
21 (µL)

]

LR
=

2

3
(η

3/25
4 η

3/23
5 − η

−24/25
4 η

−24/23
5 ), (3.25)

[

η
(0)
22 (µL)

]

LR
= η

−24/25
4 η

−24/23
5 , (3.26)

[

η
(1)
11 (µL)

]

LR
= 0.9279 η4

−24/25 η5
−24/23 − 0.0029 η4

28/25 η5
−24/23 (3.27)

+η4
3/25 η5

3/23 (−2.0241 − 0.0753 η4 + 1.1744 η4 η5) ,
[

η
(1)
12 (µL)

]

LR
= −1.3918 η4

−24/25 η5
−24/23 + 0.0043 η4

28/25 η5
−24/23 (3.28)

+1.3875 η4
28/25 η5

26/23,
[

η
(1)
21 (µL)

]

LR
= −0.0019 η4

28/25 η5
−24/23 + 5.0000 η4

1/25 η5
3/23 (3.29)

+η4
3/25 η5

3/23 (−16.6828 − 0.0502 η4 + 0.7829 η4 η5)

+η4
−24/25 η5

−24/23 (−4.4701 − 0.8327 η4 + 16.2548 η4 η5) ,
[

η
(1)
22 (µL)

]

LR
= 0.0029 η4

28/25 η5
−24/23 + 0.9250 η4

28/25 η5
26/23 (3.30)

+η4
−24/25 η5

−24/23 (6.7052 + 1.2491 η4 − 8.8822 η4 η5) .

SLL-Sector

[

η
(0)
11 (µL)

]

SLL
= 1.0153η−0.5810

4 η−0.6315
5 − 0.0153η0.6610

4 η0.7184
5 , (3.31)

[

η
(0)
12 (µL)

]

SLL
= 1.9325(η−0.5810

4 η−0.6315
5 − η0.6610

4 η0.7184
5 ), (3.32)

[

η
(0)
21 (µL)

]

SLL
= 0.0081(η0.6610

4 η0.7184
5 − η−0.5810

4 η−0.6315
5 ), (3.33)

[

η
(0)
22 (µL)

]

SLL
= 1.0153η0.6610

4 η0.7184
5 − 0.0153η−0.5810

4 η−0.6315
5 , (3.34)

[

η
(1)
11 (µL)

]

SLL
= 0.0020 η4

1.6610 η5
−0.6315 − 0.0334 η4

0.4190 η5
0.7184 (3.35)

+η4
−0.5810 η5

−0.6315 (4.2458 + 0.5700 η4 − 5.2272 η4 η5)

+η4
0.6610 η5

0.7184 (0.3640 + 0.0064 η4 + 0.0724 η4 η5) ,
[

η
(1)
12 (µL)

]

SLL
= 0.0038 η4

1.6610 η5
−0.6315 − 4.2075 η4

0.4190 η5
0.7184 (3.36)

+η4
−0.5810 η5

−0.6315 (8.0810 + 1.0848 η4 − 38.8778 η4 η5)

+η4
0.6610 η5

0.7184 (45.9008 + 0.8087 η4 − 12.7939 η4 η5) ,
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[

η
(1)
21 (µL)

]

SLL
= −0.0011 η4

1.6610 η5
−0.6315 + 0.0003 η4

0.4190 η5
0.7184 (3.37)

+η4
0.6610 η5

0.7184 (−0.0534 − 0.0034 η4 − 0.0380 η4 η5)

+η4
−0.5810 η5

−0.6315 (0.0587 − 0.0045 η4 + 0.0415 η4 η5) ,
[

η
(1)
22 (µL)

]

SLL
= −0.0020 η4

1.6610 η5
−0.6315 + 0.0334 η4

0.4190 η5
0.7184 (3.38)

+η4
−0.5810 η5

−0.6315 (0.1117 − 0.0086 η4 + 0.3083 η4 η5)

+η4
0.6610 η5

0.7184 (−6.7398 − 0.4249 η4 + 6.7219 η4 η5) .

3.3 η-Factors for K0 − K
0

mixing with µK = O(1GeV)

The formulae for the QCD factors η̂(µK , µt) ≡ η̂(µK) relating the coefficients Ci(µK) and Ci(µt)

are rather long and will not be presented. These factors can be obtained using the relation

η̂(µK) = ρ̂(µK)η̂(µL) (3.39)

with η̂(µL) given in section 3.2 and ρ̂(µK) given below. When calculating (3.39), terms of O(α2
s)

should be removed.

4 ρ-Factors in the NDR Scheme

These factors allow to calculate 〈Qi(µL)〉 from 〈Qi(µK)〉 with µK < µc. They can be expressed

in terms of

η3 ≡
α(3)

s (µc)

α
(3)
s (µK)

and η̃4 ≡
α(4)

s (µL)

α
(4)
s (µc)

. (4.1)

VLL-Sector

[

ρ(0)(µK)
]

VLL
= η

2/9
3 η̃

6/25
4 , (4.2)

[

ρ(1)(µK)
]

VLL
= 1.8951η

2/9
3 η̃

6/25
4 − 0.1033η

11/9
3 η̃

6/25
4 − 1.7917η

11/9
3 η̃

31/25
4 . (4.3)

LR-Sector

[

ρ
(0)
11 (µK)

]

LR
= η

1/9
3 η̃

3/25
4 , (4.4)

[

ρ
(0)
12 (µK)

]

LR
= 0, (4.5)
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[

ρ
(0)
21 (µK)

]

LR
=

2

3
(η

1/9
3 η̃

3/25
4 − η

−8/9
3 η̃

−24/25
4 ), (4.6)

[

ρ
(0)
22 (µK)

]

LR
= η

−8/9
3 η̃

−24/25
4 , (4.7)

[

ρ
(1)
11 (µK)

]

LR
= 0.9306 η3

−8/9 η̃
−24/25
4 − 0.0027 η3

10/9 η̃
−24/25
4 (4.8)

+η3
1/9 η̃

3/25
4 (−1.9784 − 0.0457 η3 + 1.0962 η3 η̃4) ,

[

ρ
(1)
12 (µK)

]

LR
= −1.3958 η3

−8/9 η̃
−24/25
4 + 0.0040 η3

10/9 η̃
−24/25
4 (4.9)

+1.3918 η3
10/9 η̃

28/25
4 ,

[

ρ
(1)
21 (µK)

]

LR
= −3.8570 η3

−8/9 η̃
−24/25
4 (4.10)

+η3
1/9 η̃

−24/25
4 (−0.6113 − 0.0018 η3 + 20.4220 η̃4)

+η3
1/9 η̃

3/25
4 (−16.6523 − 0.7407 log(η3) − 0.0305 η3 + 0.7308 η3 η̃4) ,

[

ρ
(1)
22 (µK)

]

LR
= 5.7855 η3

−8/9 η̃
−24/25
4 + 0.9279 η3

10/9 η̃
28/25
4 (4.11)

+η3
1/9 η̃

−24/25
4 (0.9170 + 0.0027 η3 − 7.6331 η̃4) .

SLL-Sector

[

ρ
(0)
11 (µK)

]

SLL
= 1.0153η−0.5379

3 η̃−0.5810
4 − 0.0153η0.6120

3 η̃0.6610
4 , (4.12)

[

ρ
(0)
12 (µK)

]

SLL
= 1.9325(η−0.5379

3 η̃−0.5810
4 − η0.6120

3 η̃0.6610
4 ), (4.13)

[

ρ
(0)
21 (µK)

]

SLL
= 0.0081(η0.6120

3 η̃0.6610
4 − η−0.5379

3 η̃−0.5810
4 ), (4.14)

[

ρ
(0)
22 (µK)

]

SLL
= 1.0153η0.6120

3 η̃0.6610
4 − 0.0153η−0.5379

3 η̃−0.5810
4 , (4.15)

[

ρ
(1)
11 (µK)

]

SLL
= 0.0019 η3

1.6120 η̃−0.5810
4 − 0.0663 η3

0.4621 η̃0.6610
4 (4.16)

+η3
−0.5379 η̃−0.5810

4 (3.8487 + 0.3952 η3 − 4.6906 η3 η̃4)

+η3
0.6120 η̃0.6610

4 (0.4264 + 0.0039 η3 + 0.0808 η3 η̃4) ,
[

ρ
(1)
12 (µK)

]

SLL
= 0.0036 η3

1.6120 η̃−0.5810
4 − 8.3647 η3

0.4621 η̃0.6610
4 (4.17)

+η3
−0.5379 η̃−0.5810

4 (7.3253 + 0.7521 η3 − 42.0005 η3 η̃4)

+η3
0.6120 η̃0.6610

4 (53.7722 + 0.4933 η3 − 11.9813 η3 η̃4) ,
[

ρ
(1)
21 (µK)

]

SLL
= −0.0010 η3

1.6120 η̃−0.5810
4 + 0.0005 η3

0.4621 η̃0.6610
4 (4.18)

+η3
0.6120 η̃0.6610

4 (−0.0519 − 0.0021 η3 − 0.0425 η3 η̃4)

+η3
−0.5379 η̃−0.5810

4 (0.0628 − 0.0031 η3 + 0.0372 η3 η̃4) ,
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[

ρ
(1)
22 (µK)

]

SLL
= −0.0019 η3

1.6120 η̃−0.5810
4 + 0.0663 η3

0.4621 η̃0.6610
4 (4.19)

+η3
−0.5379 η̃−0.5810

4 (0.1196 − 0.0060 η3 + 0.3331 η3 η̃4)

+η3
0.6120 η̃0.6610

4 (−6.5470 − 0.2592 η3 + 6.2950 η3 η̃4) .

Regarding the appearance of log (η3) in eq. (4.10) in the LR sector, we direct the reader’s

attention to eq. (B.4) and the fact that in the LR sector for f = 3 the form of the evolution

operator given there breaks down, as the matrix Ĵ has a singularity at f = 3. However, taking

the limit f → 3 of the complete expression (B.4), a finite result exhibiting the aforementioned

term O(αs) log (η3) is obtained [13]. In accordance with the convention of (B.6), (B.7) we treat

it as an NLO contribution to the evolution operator.

5 Numerical Results

In tables 1–4 we give the numerical values for the ηij and ρij factors in the NDR scheme. To

this end we have used α(5)
s (MZ) = 0.118 ± 0.003 with the corresponding values of α(f)

s and

Λ
(f)

MS
for f = 4 and f = 3 theories, see table 2 in the first paper in [2]. Moreover we have set

µt = mt(mt) = 166 GeV, µb = 4.4 GeV, µL = 2.0 GeV, µc = 1.3 GeV and µK = 1.0 GeV. In

order to illustrate the effect of the NLO corrections we show also the results in the LO. In doing

this we have, however, used the two-loop expression for αs in both the LO and the NLO parts.

In figs. 1 and 2 we show the factors [ηij(µ)]LR and [ηij(µ)]SLL versus µ setting α(5)
s (MZ) = 0.118.

Let us recall that in the absence of renormalization group effects [η(µ)]VLL = [ρ(µ)]VLL = 1

and [η̂(µ)]a and [ρ̂(µ)]a are unit matrices. Renormalization group effects generate non-diagonal

elements in these matrices and renormalize [η(µ)]VLL and the diagonal elements in [η̂(µ)]a and

[ρ̂(µ)]a away from unity.

Inspecting tables 1–4 and figs. 1–2 we observe the following pattern:

• Large renormalization group effects are found for the diagonal entries [η22(µ)]LR and

[η11(µ)]SLL which for α(5)
s (MZ) = 0.118 and µ = µK = 1 GeV are enhanced by factors of

5.6 and 2.9, respectively. On the other hand [η22(µ)]SLL is strongly suppressed down to

0.26 at µK = 1 GeV.
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• Similarly the renormalization group effects in the non-diagonal entries [η21(µ)]LR and

[η12(µ)]SLL are large. For µK = 1.0 GeV and α(5)
s (MZ) = 0.118 they become as large as

−3.2 and 4.8, respectively. This implies that CLR
2 (µ) is strongly affected by the presence

of the operator QLR
1 . Similarly CSLL

1 (µ) is strongly affected by the presence of QSLL
2 .

• These enhancements and suppressions are more pronounced after the inclusion of NLO

corrections. The largest NLO corrections, in the ball park of 25%, are found for the

elements [η21(µK)]LR, [η22(µK)]LR and [η22(µK)]SLL.

• [η11(µ)]LR and ηVLL(µ) are both suppressed but this suppression is at most by 10% and

30%, respectively.

• [η12(µ)]LR is small and [η21(µ)]SLL negligible in the full range of µ considered. This implies

that CLR
1 (µ) and CSLL

2 (µ) are essentially unaffected by the presence of the operators QLR
2

and QSLL
1 , respectively.

• Similar patterns are observed for the [ρij(µ)]a factors.

On the basis of this pattern we conclude that the renormalization group effects strongly enhance

the Wilson coefficients CLR
2 and CSLL

1 and strongly suppress CSLL
2 with respect to their values

at µt. The corresponding effects in CVLL
1 and CLR

1 are substantially smaller.
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α(5)
s (MZ) = 0.115 α(5)

s (MZ) = 0.118 α(5)
s (MZ) = 0.121

LO NLO LO NLO LO NLO

[η(µb)]VLL 0.835 0.847 0.829 0.842 0.823 0.836

[η11(µb)]LR 0.914 0.923 0.911 0.921 0.907 0.919

[η12(µb)]LR 0 −0.037 0 −0.041 0 −0.045

[η21(µb)]LR −0.760 −0.835 −0.801 −0.885 −0.845 −0.939

[η22(µb)]LR 2.054 2.181 2.112 2.254 2.176 2.334

[η11(µb)]SLL 1.560 1.621 1.587 1.654 1.616 1.690

[η12(µb)]SLL 1.809 1.910 1.884 1.993 1.962 2.082

[η21(µb)]SLL −0.008 −0.006 −0.008 −0.007 −0.008 −0.007

[η22(µb)]SLL 0.595 0.563 0.583 0.549 0.570 0.535

Table 1: Numerical values for the η-factors for B0
d,s − B

0
d,s mixing.

α(5)
s (MZ) = 0.115 α(5)

s (MZ) = 0.118 α(5)
s (MZ) = 0.121

LO NLO LO NLO LO NLO

[η(µL)]VLL 0.778 0.796 0.768 0.788 0.757 0.780

[η11(µL)]LR 0.882 0.906 0.876 0.906 0.870 0.906

[η12(µL)]LR 0 −0.076 0 −0.087 0 −0.101

[η21(µL)]LR −1.236 −1.401 −1.336 −1.530 −1.449 −1.677

[η22(µL)]LR 2.735 3.009 2.879 3.200 3.043 3.420

[η11(µL)]SLL 1.859 1.976 1.918 2.052 1.984 2.138

[η12(µL)]SLL 2.586 2.775 2.732 2.946 2.892 3.137

[η21(µL)]SLL −0.011 −0.009 −0.011 −0.009 −0.012 −0.009

[η22(µL)]SLL 0.480 0.438 0.461 0.417 0.442 0.394

Table 2: Numerical values for the η-factors for K0 − K
0

mixing with µ = µL = 2 GeV.
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α(5)
s (MZ) = 0.115 α(5)

s (MZ) = 0.118 α(5)
s (MZ) = 0.121

LO NLO LO NLO LO NLO

[η(µK)]VLL 0.701 0.735 0.681 0.720 0.658 0.705

[η11(µK)]LR 0.837 0.921 0.825 0.941 0.811 0.978

[η12(µK)]LR 0 −0.194 0 −0.254 0 −0.347

[η21(µK)]LR −2.199 −2.657 −2.545 −3.159 −3.006 −3.861

[η22(µK)]LR 4.136 4.875 4.643 5.630 5.320 6.688

[η11(µK)]SLL 2.392 2.663 2.566 2.912 2.787 3.243

[η12(µK)]SLL 3.836 4.273 4.223 4.782 4.702 5.442

[η21(µK)]SLL −0.016 −0.011 −0.018 −0.012 −0.020 −0.012

[η22(µK)]SLL 0.346 0.291 0.314 0.255 0.279 0.217

Table 3: Numerical values for the η-factors for K0 − K
0

mixing with µK = 1 GeV.

α(5)
s (MZ) = 0.115 α(5)

s (MZ) = 0.118 α(5)
s (MZ) = 0.121

LO NLO LO NLO LO NLO

[ρ(µK)]VLL 0.902 0.923 0.887 0.914 0.870 0.905

[ρ11(µK)]LR 0.950 0.955 0.942 0.951 0.933 0.947

[ρ12(µK)]LR 0 −0.045 0 −0.060 0 −0.083

[ρ21(µK)]LR −0.375 −0.448 −0.447 −0.548 −0.544 −0.688

[ρ22(µK)]LR 1.512 1.620 1.613 1.762 1.748 1.963

[ρ11(µK)]SLL 1.293 1.357 1.345 1.431 1.413 1.533

[ρ12(µK)]SLL 1.029 1.176 1.190 1.381 1.394 1.650

[ρ21(µK)]SLL −0.004 −0.003 −0.005 −0.003 −0.006 −0.003

[ρ22(µK)]SLL 0.744 0.688 0.710 0.641 0.670 0.584

Table 4: Numerical values for the ρ-factors with µK = 1 GeV and µL = 2 GeV.
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[�22℄LR[�21℄LR[�12℄LR[�11℄LR

� [GeV℄ 303 10 MW�K m
 �L mb mt

6543210-1-2-3-4
Figure 1: The [ηij ]LR factors as functions of µ for α(5)

s (MZ) = 0.118.

[�22℄SLL[�21℄SLL[�12℄SLL[�11℄SLL

� [GeV℄ 303 10 MW�K m
 �L mb mt

54.543.532.521.510.50-0.5
Figure 2: The [ηij ]SLL factors as functions of µ for α(5)

s (MZ) = 0.118

17



6 General Remarks

6.1 Renormalization Scheme Dependence

The evolution matrix Û is renormalization scheme dependent. It is instructive to recall how

this scheme dependence is canceled in physical amplitudes by considering a single operator Q.

Then the ∆F = 2 amplitude reads

A(∆F = 2) = 〈Heff〉 =
G2

F

16π2
M2

W VCKMC(µ)〈Q(µ)〉 . (6.1)

The Wilson coefficient is given by

C(µ) = U(µ, µt)C(µt) (6.2)

where

U(µ, µt) =

[

1 +
αs(µ)

4π
J

][

αs(µt)

αs(µ)

]P[

1 − αs(µt)

4π
J

]

(6.3)

with

P =
γ(0)

2β0
, J =

P

β0
β1 −

γ(1)

2β0
(6.4)

and

C(µt) = C0 +
αs(µt)

4π
C1. (6.5)

C0 and C1 depend generally on mt, MW and the masses of new particles in extensions of the

SM.

Now, the renormalization scheme dependence of C1 is canceled by the one of J in the last

square bracket in (6.3). The scheme dependence of J in the first square bracket in (6.3) is

canceled by the scheme dependence of 〈Q(µ)〉. The power P and the coefficient C0 are scheme

independent.
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6.2 Transformation to Different Renormalization Schemes

Once the Wilson coefficients Ci(µ) have been calculated in the NDR scheme, they can be

transformed to a different renormalization scheme A by means of

~CA(µ) =

(

1 − αs(µ)

4π
∆r̂T

NDR→A

)

~CNDR(µ) . (6.6)

Likewise the matrix elements 〈Qi(µ)〉 can be transformed from scheme A to the NDR scheme:

〈 ~Q(µ)〉NDR =

(

1 +
αs(µ)

4π
∆r̂A→NDR

)

〈 ~Q(µ)〉A , ∆r̂A→NDR = −∆r̂NDR→A . (6.7)

The transformation matrices ∆r̂NDR→RI from the NDR scheme to the RI schemes of [5] can be

found in section 5 of [6].

6.3 ηB and η2 Factors in the SM

At this point we would like to warn the reader that the QCD factors ηB = 0.55 [3, 4] and η2 [3]

used in the analysis of B0
d,s − B

0
d,s mixing and of the top quark contribution to εK in the SM

should not be identified with the factors [η(µb)]VLL and [η(µK)]VLL presented in this paper.

The factors ηB and η2 are discussed in detail in [1, 2, 3]. See in particular the expressions

(12.10) and (13.3) in [1] for η2 and ηB, respectively. Using these expressions it is straightforward

to find the relation between ηB and [η(µb)]VLL. It reads

[η(µb)]VLL CVLL
SM (µt) =

[

α(5)
s (µb)

]−6/23
[

1 +
α(5)

s (µb)

4π
J5

]

ηB4S0(xt) (6.8)

where CVLL
SM (µt) includes NLO corrections calculated in [3, 4], J5 = 1.627 in the NDR scheme

and 4S0(xt) with xt = m2
t (µt)/M

2
W is the LO expression for CVLL

SM (µt) that is obtained from box

diagrams with top quark exchanges without QCD corrections. ηB in contrast to [η(µb)]VLL is

renormalization scheme independent and does not depend on µb. The latter dependence has

been factored out as seen on the r.h.s of (6.8). Notice that the QCD corrections to CVLL
SM (µt)

have been absorbed into ηB. An analogous relation between η2 and [η(µK)]VLL can be found.
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6.4 Going Beyond the SM

In the SM

〈B̄0|H∆B=2
eff |B0〉SM =

G2
F

48π2
M2

W mBF 2
BB̂B(V ∗

tbVtd)
2ηB4S0(xt) (6.9)

where B̂B is the renormalization group invariant parameter defined by

B̂B = BVLL
1 (µb)

[

α(5)
s (µb)

]−6/23
[

1 +
α(5)

s (µb)

4π
J5

]

, (6.10)

with BVLL
1 (µ) defined in (7.1). FB is the B-meson decay constant and ηB is the QCD factor

defined in (6.8).

In the extensions of the SM with minimal flavour violation (MFV) and without contributions

from new operators it is useful to generalize (6.9) to

〈B̄0|H∆B=2
eff |B0〉 =

G2
F

48π2
M2

W mBF 2
BB̂B(V ∗

tbVtd)
2ηB4Ftt (6.11)

where

Ftt = S0(xt) +
ηnew

B

ηB

Snew
0 . (6.12)

Here ηnew
B and Snew

0 describe new physics contributions in analogy to ηB and S0(xt), respectively.

That is

[η(µb)]VLL CVLL
new (µt) =

[

α(5)
s (µb)

]−6/23
[

1 +
α(5)

s (µb)

4π
J5

]

ηnew
B 4Snew

0 (xt), (6.13)

where CVLL
new (µt) is the new physics contribution to CVLL

1 (µt) and 4Snew
0 results from new physics

contributions without QCD corrections.

In more complicated models in which new flavour-violating couplings are present and the

full set of operators (2.1) is relevant, it appears to be most useful to evaluate new physics

contributions using simply

〈B̄0|H∆B=2
eff |B0〉new =

G2
F

16π2
M2

W

∑

Ci(µ)〈B̄0|Qi(µ)|B0〉 (6.14)

with Ci(µ) evaluated by means of the formulae in sections 2 and 3. Similar comments apply to

the K0 − K̄0 system with obvious replacements.
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7 Phenomenological Applications

7.1 Hadronic Matrix Elements for K0 − K̄0 Mixing

The matrix elements 〈K̄0|Qi(µ)|K0〉 ≡ 〈Qi(µ)〉 contributing to K0 − K̄0 mixing can be written

as

〈QVLL
1 (µ)〉 =

1

3
mKF 2

KBVLL
1 (µ), (7.1)

〈QLR
1 (µ)〉 = −1

6
R(µ) mKF 2

KBLR
1 (µ), (7.2)

〈QLR
2 (µ)〉 =

1

4
R(µ) mKF 2

KBLR
2 (µ), (7.3)

〈QSLL
1 (µ)〉 = − 5

24
R(µ) mKF 2

KBSLL
1 (µ), (7.4)

〈QSLL
2 (µ)〉 = −1

2
R(µ) mKF 2

KBSLL
2 (µ), (7.5)

where

R(µ) =

(

mK

ms(µ) + md(µ)

)2

(7.6)

and FK is the K-meson decay constant. Let us calculate the non-perturbative parameters

Ba
i (µ) using the lattice results of [10] discussed in [9]. In the Landau RI scheme (LRI) the

Ba
i (µ) factors are given by

[

BVLL
1 (µ)

]

LRI
= [B1(µ)]LRI ,

[

BLR
1 (µ)

]

LRI
= [B5(µ)]LRI ,

[

BLR
2 (µ)

]

LRI
= [B4(µ)]LRI , (7.7)

[

BSLL
1 (µ)

]

LRI
= [B2(µ)]LRI ,

[

BSLL
2 (µ)

]

LRI
=
[

5

3
B2(µ) − 2

3
B3(µ)

]

LRI
,

where Bi(µ), i = 1, . . . , 5 are the non-perturbative factors entering the matrix elements in the

operator basis of [9].

In order to find the matrix elements (7.1)–(7.5) in the NDR scheme we use the results of [6],

which allow us to relate the Bi factors in the LRI and NDR schemes. We find

[

BVLL
1 (µ)

]

NDR
=

[

BVLL
1 (µ)

]

LRI
+

α(4)
s (µ)

4π
rVLL

[

BVLL
1 (µ)

]

LRI
, (7.8)

[

BLR
1 (µ)

]

NDR
=

[

BLR
1 (µ)

]

LRI
+

α(4)
s (µ)

4π

[

rLR
11 BLR

1 (µ) − 3

2
rLR
12 BLR

2 (µ)
]

LRI
, (7.9)
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[

BLR
2 (µ)

]

NDR
=

[

BLR
2 (µ)

]

LRI
+

α(4)
s (µ)

4π

[

−2

3
rLR
21 BLR

1 (µ) + rLR
22 BLR

2 (µ)
]

LRI
, (7.10)

[

BSLL
1 (µ)

]

NDR
=

[

BSLL
1 (µ)

]

LRI
+

α(4)
s (µ)

4π

[

rSLL
11 BSLL

1 (µ) +
12

5
rSLL
12 BSLL

2 (µ)
]

LRI
, (7.11)

[

BSLL
2 (µ)

]

NDR
=

[

BSLL
2 (µ)

]

LRI
+

α(4)
s (µ)

4π

[

5

12
rSLL
21 BSLL

1 (µ) + rSLL
22 BSLL

2 (µ)
]

LRI
, (7.12)

where

rVLL ≡ ∆rVLL
LRI→NDR = 0.8785, (7.13)

r̂LR ≡ ∆rLR
LRI→NDR =

(−1.1288 −6.7726
0.3069 10.8712

)

, (7.14)

r̂SLL ≡ ∆rSLL
LRI→NDR =

(

5.6438 0.2140
12.9387 2.6892

)

. (7.15)

Now, the Bi factors presented in [9, 10] read for µ = µL = 2 GeV as follows:

[B1]LRI = 0.60 ± 0.06, [B2]LRI = 0.66 ± 0.04,

[B3]LRI = 1.05 ± 0.12, [B4]LRI = 1.03 ± 0.06, (7.16)

[B5]LRI = 0.73 ± 0.10.

Using the central values for these parameters, we find by means of (7.7)

[

BVLL
1

]

LRI
= 0.60,

[

BLR
1

]

LRI
= 0.73,

[

BLR
2

]

LRI
= 1.03, (7.17)

[

BSLL
1

]

LRI
= 0.66,

[

BSLL
2

]

LRI
= 0.40.

Finally, setting α(4)
s (2 GeV) = 0.306 and using (7.8)–(7.12) we obtain in the NDR scheme for

µ = µL = 2 GeV

[

BVLL
1

]

NDR
= 0.61,

[

BLR
1

]

NDR
= 0.96,

[

BLR
2

]

NDR
= 1.30, (7.18)

[

BSLL
1

]

NDR
= 0.76,

[

BSLL
2

]

NDR
= 0.51.

We observe that the scheme dependence in the LR and SLL sectors is large, amounting to

a shift of the Bi factors by roughly 30% and 20%, respectively. The corresponding scheme

dependence in the VLL sector amounts to 2%.
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Setting FK = 160 MeV and mK = 498 MeV we obtain at µ = 2 GeV

〈QVLL
1 〉NDR = 0.26 · 10−2GeV3, (7.19)

〈QLR
1 〉NDR = −3.83

[

115MeV

ms(2GeV) + md(2GeV)

]2

· 10−2GeV3, (7.20)

〈QLR
2 〉NDR = 7.77

[

115MeV

ms(2GeV) + md(2GeV)

]2

· 10−2GeV3, (7.21)

〈QSLL
1 〉NDR = −3.79

[

115MeV

ms(2GeV) + md(2GeV)

]2

· 10−2GeV3, (7.22)

〈QSLL
2 〉NDR = −6.10

[

115MeV

ms(2GeV) + md(2GeV)

]2

· 10−2GeV3. (7.23)

7.2 ∆MK, ∆MB and εK

Next we would like to present general formulae for the mass differences ∆MK and ∆MB in the

K0 − K̄0 and B0 − B̄0 systems and for the CP-violating parameter εK . In the case of ∆MK

and εK our formulae are valid for the contributions of heavy internal particles with masses

higher than MW . The known SM contributions from internal charm quark exchanges and

mixed charm-top exchanges [14] have to be added separately.

We have

∆MK = 2Re〈K̄0|H∆S=2
eff |K0〉 , (7.24)

∆MB = 2|〈B̄0|H∆B=2
eff |B0〉| , (7.25)

εK =
exp(iπ/4)√

2∆MK

Im〈K̄0|H∆S=2
eff |K0〉 . (7.26)

The matrix element 〈K̄0|H∆S=2
eff |K0〉 can be written as follows

〈K̄0|H∆S=2
eff |K0〉 =

G2
F

48π2
M2

W mKF 2
K

[

PVLL
1 (CVLL

1 (µt) + CVRR
1 (µt))

+P LR
1 CLR

1 (µt) + P LR
2 CLR

2 (µt)

+P SLL
1 (CSLL

1 (µt) + CSRR
1 (µt)) + P SLL

2 (CSLL
2 (µt) + CSRR

2 (µt))
]

(7.27)
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with

PVLL
1 = [η(µL)]VLL BVLL

1 (µL), (7.28)

P LR
1 = −1

2
[η11(µL)]LR

[

BLR
1 (µL)

]

eff
+

3

4
[η21(µL)]LR

[

BLR
2 (µL)

]

eff
, (7.29)

P LR
2 = −1

2
[η12(µL)]LR

[

BLR
1 (µL)

]

eff
+

3

4
[η22(µL)]LR

[

BLR
2 (µL)

]

eff
, (7.30)

P SLL
1 = −5

8
[η11(µL)]SLL

[

BSLL
1 (µL)

]

eff
− 3

2
[η21(µL)]SLL

[

BSLL
2 (µL)

]

eff
, (7.31)

P SLL
2 = −5

8
[η12(µL)]SLL

[

BSLL
1 (µL)

]

eff
− 3

2
[η22(µL)]SLL

[

BSLL
2 (µL)

]

eff
. (7.32)

In the case of the SM and MFV models one can use (6.9) and (6.11) instead of (7.28). In

writing these formulae we have absorbed the CKM factors into Ci(µt). The effective parameters

[Ba
i (µL)]eff are defined by

[Ba
i (µL)]eff ≡

(

mK

ms(µL) + md(µL)

)2

Ba
i (µL) = 18.75

[

115 MeV

ms(µL) + md(µL)

]2

Ba
i (µL). (7.33)

In the case of B0−B̄0 mixing one has to make the replacements µL → µb and mKF 2
K → mBF 2

B.

Then in the case of B0
d − B̄0

d system

[Ba
i (µb)]eff ≡

(

mB

mb(µb) + md(µb)

)2

Ba
i (µb) = 1.44

[

4.4 GeV

mb(µb) + md(µb)

]2

Ba
i (µb), (7.34)

with an analogous formula for the B0
s − B̄0

s system.

We would like to emphasize that these formulae together with the QCD factors ηij presented

in Section 3 are valid for any extension of the SM. In particular the coefficients P a
i are universal.

New physics contributions enter only the coefficients Ca
i (µt). The latter have to be evaluated

in the NDR scheme in order to cancel the scheme dependence of the universal coefficients P a
i .

In the process of multiplying Ca
i (µt) and P a

i terms O(α2
s) have to be removed.

It is instructive to evaluate the coefficients P a
i for the K0− K̄0 system. Setting µL = 2 GeV,

Λ
(4)

MS
= 325 MeV, ms(µL) + md(µL) = 115 MeV and using the values for Ba

i in (7.18) we find

PVLL
1 = 0.48, (7.35)
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P LR
1 = −36.1, P LR

2 = 59.3, (7.36)

P SLL
1 = −18.1, P SLL

2 = −32.2. (7.37)

We observe that the coefficients P LR
i and P SLL

i are by two orders of magnitude larger than PVLL
1 .

This originates in the strong enhancement of the QCD factors ηij for the LR and SLL (SRR)

operators and in the chiral enhancement of their matrix elements as seen in (7.33). Consequently

even small new physics contributions to CLR
i (µt) and CSLL

i (µt) can play an important role in

the phenomenology [8, 9].

In the case of B0− B̄0 mixing the chiral enhancement of the hadronic matrix elements in the

LR and SLL sectors is absent. Moreover, the QCD factors ηij are smaller than in the K0 − K̄0

mixing. Consequently the coefficients P LR
i and P SLL

i are smaller in this case. As lattice results

are not yet available for all the relevant hadronic matrix elements in the B system [15] we will

set Ba
i (mb) = 1. Taking mB = 5.28 GeV, µb = 4.4 GeV, mb(µb) + md(µb) = 4.4 GeV and

Λ
(5)

MS
= 226 MeV we find

PVLL
1 = 0.84, (7.38)

P LR
1 = −1.62, P LR

2 = 2.46, (7.39)

P SLL
1 = −1.47, P SLL

2 = −2.98. (7.40)

8 Summary

We have presented analytic formulae for the QCD renormalization group factors relating the

Wilson coefficients Ci(µt) and Ci(µ), with µt = O(mt) and µ < µt, of the ∆F = 2 dimension

six four-quark operators Qi. The formulae presented in section 3 are given in the NDR scheme

but are otherwise universal and apply to the Standard Model and all its possible extensions.

In order to complete the evaluation of ∆F = 2 amplitudes, the QCD factors presented here

have to be combined with the Wilson coefficients Ci(µt) evaluated in a given model at the short

distance scale µt and with the hadronic matrix elements 〈Qi(µ)〉 evaluated at µ = µb, µ = µL

or µ = µK dependently on the process considered. Ci(µt) and 〈Qi(µ)〉 have to be computed
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in the NDR scheme in order to obtain a renormalization scheme independent answer for the

physical amplitudes.

We have also presented analytic formulae for the QCD factors relating the matrix elements

〈Qi(2 GeV)〉 and 〈Qi(µK)〉 with µK < 2 GeV. These formulae allow the comparison of the

matrix elements obtained in lattice simulations with those obtained in approaches which use

lower renormalization scales.

Our numerical analysis shows that the renormalization-group effects are very large in the

LR and SLL sectors. This in particular is the case for the elements [η21(µ)]LR, [η22(µ)]LR,

[η11(µ)]SLL, [η12(µ)]SLL and [η22(µ)]SLL and is in accordance with the previous analyses [8, 9].

The NLO corrections amount typically to 5-15% except for the elements [η21(µ)]LR, [η22(µ)]LR

and [η22(µ)]SLL, where in the case of µ = 1GeV they can reach 25%. As a result of this pattern

the renormalization group effects strongly enhance the Wilson coefficients CLR
2 and CSLL

1 and

strongly suppress CSLL
2 with respect to their values at µt. The corresponding effects in CVLL

1

and CLR
1 are substantially smaller.

Finally we have presented expressions for the mass differences ∆MK and ∆MB and the

CP-violating parameter ǫK in terms of the non-perturbative parameters Ba
i and the Wilson

coefficients Ci(µt). These formulae include renormalization group effects at the NLO level and

allow to calculate straightforwardly ∆MK , ∆MB and ǫK in any extension of the SM once the

Wilson coefficients Ci(µt) and the non-perturbative parameters Ba
i are known in the NDR

scheme. In the case of K0 − K̄0 mixing we have presented the results for [Ba
i (2 GeV)]NDR using

the lattice results obtained in the LRI scheme. The corresponding results for the B system

should be available this year.
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Appendix

A One-Loop and Two-Loop Anomalous Dimension Ma-

trices

We give below the one-loop and two-loop anomalous dimension matrices. The two-loop expres-

sions are given in the NDR scheme [6].

γ(0)VLL = 4, γ(1)VLL = −7 + 4
9
f,

γ̂(0)LR =

(

2 12

0 −16

)

, γ̂(1)LR =

(

71
3
− 22

9
f 198 − 44

3
f

225
4

− 2f −1343
6

+ 68
9
f

)

,

γ̂(0)SLL =

( −10 1
6

−40 34
3

)

, γ̂(1)SLL =

( −1459
9

+ 74
9
f −35

36
− 1

54
f

−6332
9

+ 584
9

f 2065
9

− 394
27

f

)

.

(A.1)

B Expansion of the evolution matrices Û in αs

Recall the renormalization group equation to which (2.12) is the formal solution. At NLO it

reads, written in terms of αs,

dÛ(µ1, µ2)

dαs
=

[

− γ̂(0)T

2β0

1

αs
+

(

β1

2β2
0

γ̂(0)T − 1

2β0
γ̂(1)T

)

1

4π

]

Û(µ1, µ2). (B.2)

At the leading order, where only the term ∝ 1/αs is kept, (B.2) has the (exact) solution

Û (0)(µ1, µ2) =

(

αs(µ2)

αs(µ1)

)
γ̂(0)T

2β0

= exp

(

γ̂(0)T

2β0
log

αs(µ2)

αs(µ1)

)

. (B.3)

At the next-to-leading order one has [1]

Û(µ1, µ2) =

(

1̂ +
α(f)

s (µ1)

4π
Ĵf

)

Û
(0)
f

(

1̂ − α(f)
s (µ2)

4π
Ĵf

)

, (B.4)

where higher orders in the parentheses have been omitted. The algorithm for constructing the

matrix Ĵf can be found in [1, 2, 13]. Eq. (B.4) holds in a theory with a given number f of
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active quark flavours. When evolving across a quark threshold, as for instance in (2.14), one

finds

Û(µL, µt) =

(

1̂ +
α(4)

s (µL)

4π
Ĵ4

)

Û
(0)
f=4

(

1̂ − α(4)
s (µb)

4π
Ĵ4

)(

1̂ +
α(5)

s (µb)

4π
Ĵ5

)

Û
(0)
f=5

(

1̂ − α(5)
s (µt)

4π
Ĵ5

)

.

(B.5)

In light of the fact that O(α2
s) and higher terms have been dropped in (B.2) and (B.4), we

adopt the convention

ηP =

(

αs(µ2)

αs(µ1)

)P

= O(α0
s), (B.6)

log(η) = O(α0
s) (B.7)

and drop all O(α2
s) and higher terms in (B.5) and similar expressions. For the desired two- and

three-step evolution matrices, one obtains

Û(µL, µt) = Û
(0)
f=4(µL, µb)Û

(0)
f=5(µb, µt)

+
α(4)

s (µL)

4π

[

Ĵ4Û
(0)
f=4Û

(0)
f=5 + η4Û

(0)
f=4

(

Ĵ5 − Ĵ4

)

Û
(0)
f=5 − η4η5Û

(0)
f=4Û

(0)
f=5Ĵ5

]

, (B.8)

Û(µK , µL) = Û
(0)
f=3(µK , µc)Û

(0)
f=4(µc, µL)

+
α(3)

s (µK)

4π

[

Ĵ3Û
(0)
f=3Û

(0)
f=4 + η3Û

(0)
f=3

(

Ĵ4 − Ĵ3

)

Û
(0)
f=4 − η3η4Û

(0)
f=3Û

(0)
f=4Ĵ4

]

, (B.9)

Û(µK , µt) = Û
(0)
f=3(µK , µc)Û

(0)
f=4(µc, µb)Û

(0)
f=5(µb, µt)

+
α(3)

s (µK)

4π

[

Ĵ3Û
(0)
f=3Û

(0)
f=4Û

(0)
f=5 + η3Û

(0)
f=3

(

Ĵ4 − Ĵ3

)

Û
(0)
f=4Û

(0)
f=5

+η3η4Û
(0)
f=3Û

(0)
f=4

(

Ĵ5 − Ĵ4

)

Û
(0)
f=5 − η3η4η5Û

(0)
f=3Û

(0)
f=4Û

(0)
f=5J5

]

, (B.10)

where we have suppressed some obvious arguments in the LO evolution matrices U (0) in order

not to unnecessarily clutter the expressions.

C The Evolution Matrix Û(µt, µs)

For completeness we give here the elements of the evolution matrix Û(µt, µs) in a f = 6 flavour

theory with µs > µt. The renormalization group evolution from µs down to µt can even be
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included as in (1.4) when µs is only by a factor of two higher than mt. However, it is only

necessary when µs > 4mt in order to avoid large logarithms.

The formulae given below are not as general as the ones given in section 3. They apply

only to the evolution of new physics contributions which do not involve SM particles except

for the number of quark flavours entering αs and the anomalous dimensions of the operators

(2.1). This is for instance the case considered in [8, 9] in which squarks and gluinos have been

integrated out at a scale µs ≫ µt. On the other hand the renormalization group analysis of

charged Higgs contributions with MH± ≫ mt would be more complicated as both H± and top

can be simultaneously exchanged in box diagrams. Integrating out first H± and subsequently

the top would introduce bilocal structures for µt < µ < µs quite analogous to the study of

charm contributions to K0 − K
0

mixing [7, 14]. We find then

VLL-Sector

[

η(0)(µt)
]

VLL
= η

6/21
6 , (C.11)

[

η(1)(µt)
]

VLL
= 1.3707(1− η6)η

6/21
6 . (C.12)

LR-Sector

[

η
(0)
11 (µt)

]

LR
= η

3/21
6 , (C.13)

[

η
(0)
12 (µt)

]

LR
= 0, (C.14)

[

η
(0)
21 (µt)

]

LR
=

2

3
(η

3/21
6 − η

−24/21
6 ), (C.15)

[

η
(0)
22 (µt)

]

LR
= η

−24/21
6 , (C.16)

[

η
(1)
11 (µt)

]

LR
= 0.9219 η6

−24/21 + η6
3/21 (−2.2194 + 1.2975 η6) , (C.17)

[

η
(1)
12 (µt)

]

LR
= 1.3828 (η6

24/21 − η
−24/21
6 ), (C.18)

[

η
(1)
21 (µt)

]

LR
= η6

3/21 (−10.1463 + 0.8650 η6) + η6
−24/21 (−6.4603 + 15.7415 η6) , (C.19)

[

η
(1)
22 (µt)

]

LR
= 0.9219 η6

24/21 + η6
−24/21 (9.6904 − 10.6122 η6) . (C.20)

SLL-Sector

[

η
(0)
11 (µt)

]

SLL
= 1.0153η−0.6916

6 − 0.0153η0.7869
6 , (C.21)
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[

η
(0)
12 (µt)

]

SLL
= 1.9325(η−0.6916

6 − η0.7869
6 ), (C.22)

[

η
(0)
21 (µt)

]

SLL
= 0.0081(η0.7869

6 − η−0.6916
6 ), (C.23)

[

η
(0)
22 (µt)

]

SLL
= 1.0153η0.7869

6 − 0.0153η−0.6916
6 , (C.24)

[

η
(1)
11 (µt)

]

SLL
= η6

−0.6916 (5.6478 − 6.0350 η6) + η6
0.7869 (0.3272 + 0.0600 η6) , (C.25)

[

η
(1)
12 (µt)

]

SLL
= η6

−0.6916 (10.7494 − 37.9209 η6) + η6
0.7869 (41.2556 − 14.0841 η6) ,(C.26)

[

η
(1)
21 (µt)

]

SLL
= η6

0.7869 (−0.0618 − 0.0315 η6) + η6
−0.6916 (0.0454 + 0.0479 η6) , (C.27)

[

η
(1)
22 (µt)

]

SLL
= η6

−0.6916 (0.0865 + 0.3007 η6) + η6
0.7869 (−7.7870 + 7.3999 η6) . (C.28)

Here µt = O(mt) and η6 = α(6)
s (µs)/α

(6)
s (µt). These results together with those presented in

section 3 and 4 allow to find Û(µ, µs) with µ < µt, see (1.4).
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