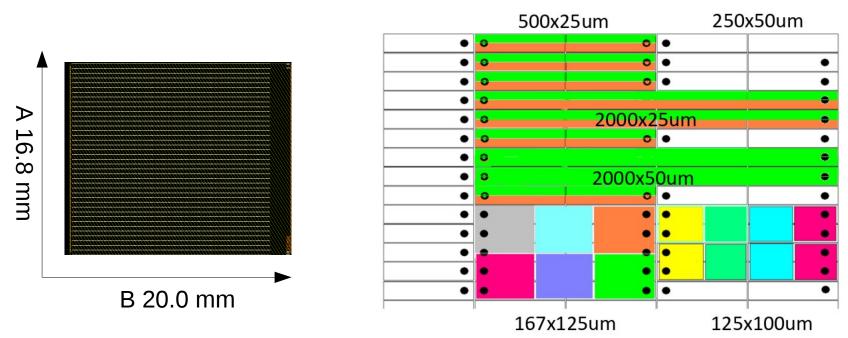


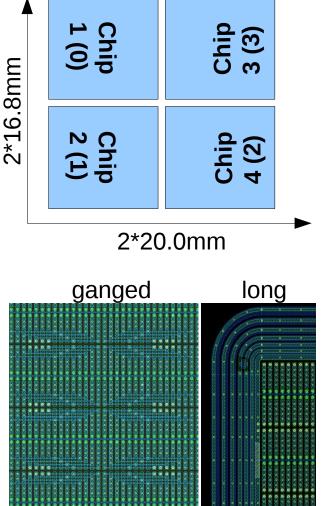
Kenneth Wraight UK Atlas Pixel group

SLAC Testbeam


- ITk motivations
- SLAC testbeam
- EUTelescope
- Strip testbeam

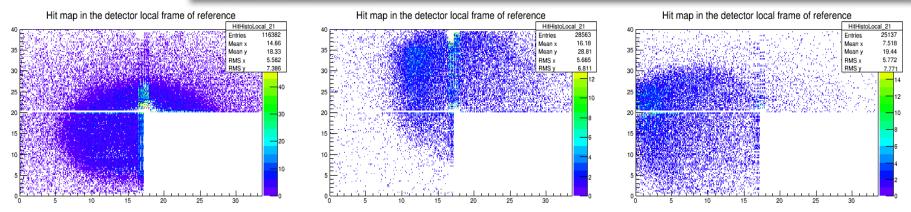
ITk Upgrade Sensors

- New generation of Si pixel detectors for Atlas upgrade
 - Greater resolution and radiation hardness



Current R&D: FE-I4 chips with various pixel geometries
 – 250x50um² standard (26880 channels)

Quad anatomy


- 4 250x50um² Fel4 chips
- Adapted inter-chip regions to keep active area
 - Horizontal: Ganged pixels (multiple pixels per channel)
 - Vertical: Long pixels (250->500µm)
- Consequences for DAQ and analysis

01/07/14

Quad DAQ evolution

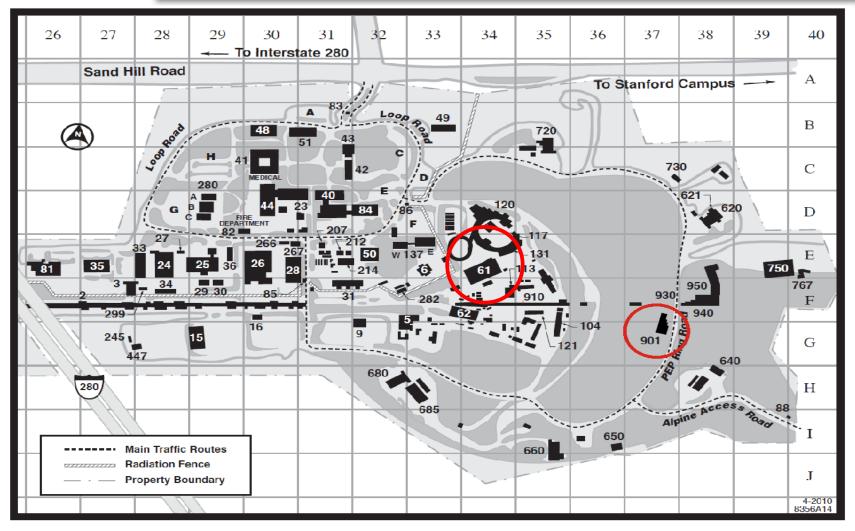
- Initially (preNov `13) regions read out singly
 - Required orientation "by hand"
 - Problems with reconstruction&analysis with same plane DUTs
- EUDaq plugin: Martin Kocian (Nov `13)
 - Data format compatible with EUDAQ: 4 chips --> 1 DUT
 - Edit RCE producer
 - Module3.ModuleType = 4 (1) for quad (single)

01/07/14

DESY Workshop 30/6-2/7

Testbeam Facilities

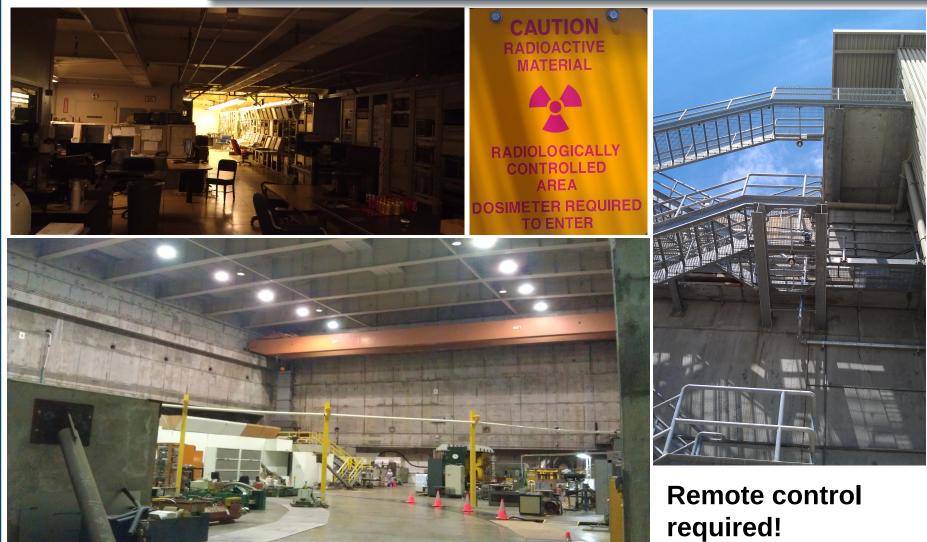
- DESY (March `13-Feb `14)
 - 4GeV electrons
 - Scintillator trigger (constant beam flux)
- SLAC (April `14)
 - 12.5GeV electrons
 - Trigger from beam: 5 & 10 Hz
- CERN SPS (October `14)
 - 120GeV pions
 - Scintillator triggering
- All organised by ATLAS PPS group
 DESY Workshop 30/6-2/7



ACONITE visiting from DESY from Apr-Jul

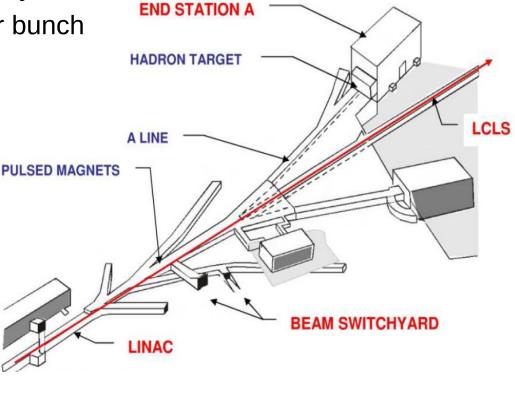
SLAC 29/04 - 10/05

DESY Workshop 30/6-2/7



End Station A (a.k.a. ESTB)

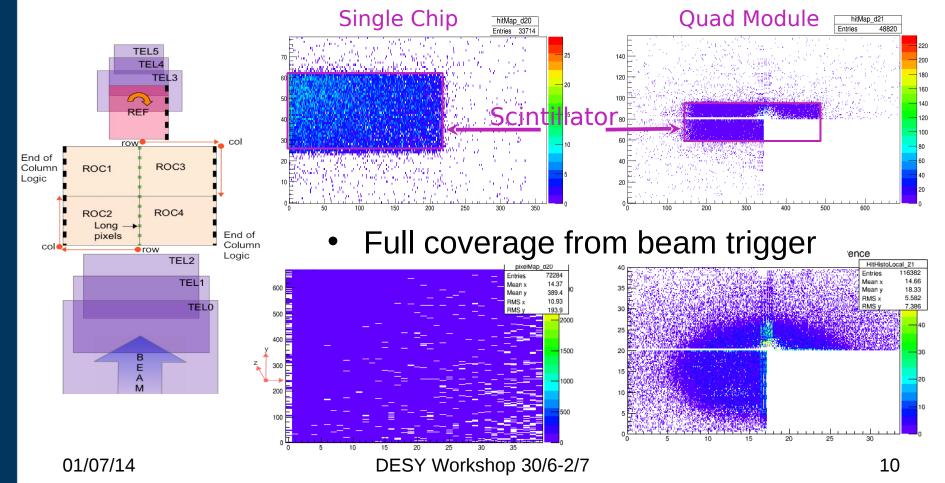
End Station A (a.k.a. ESTB) ctd.


DESY Workshop 30/6-2/7

Parasites & Particles

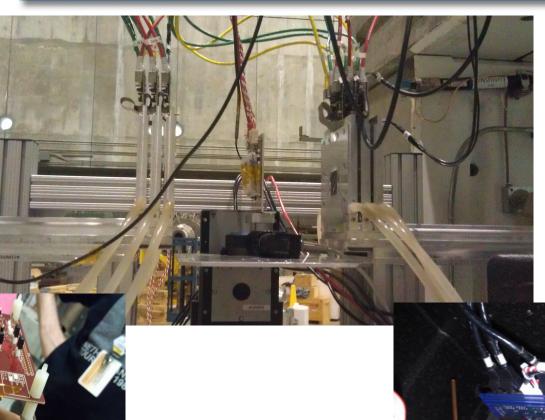
- ESTB is parasitic beam from Linac Coherent Light Source
 - Secondary beam of electrons up to 13.6GeV of LCLS beam
 - 5Hz standard bunch frequency
 - Variable particle number per bunch
- SLAC benefits
 - Triggering available from beam
 - Larger region of interest than previous scintillator limited area
 - Reduced multiple scattering
 - Possible to take data with
 - more devices in beam

01/07/14



Triggering techniques

- Trigger is from a scintillator attached to 1st telescope plane
 - Only a fraction of coverage of 1 CMOS chip


Beam Conditions

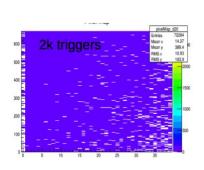
- Data taken with various conditions
 - 5 & 10Hz frequencies --> better statistics
 - dependent on LCLS users
 - Varying charge per bunch
 - Dependent on LCLS users
 - some control with beam slits
 - Consistent beam energy of 12.5GeV
- Used multiple devices in beam
 - -2-4 devices used --> 6-10 sensor planes
 - Limited by available power, mounts and cooling for devices
 - More made as testbeam developed
 - Constancy of beam energy essential

Telescope and device set-up

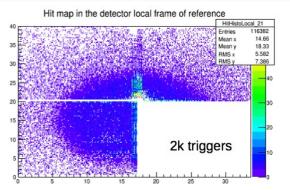
Far side (Mimosa 5)

Beam side (Mimosa 0)

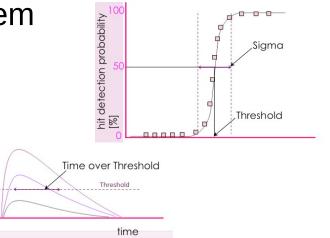
01/07/14


Device mounts

DESY Workshop 30/6-2/7



Control of Testbeam


- EUTelescope
 - Config for runs (devices)
 - (semi-)Online monitor(full quad monitor with plugin)

amplitud

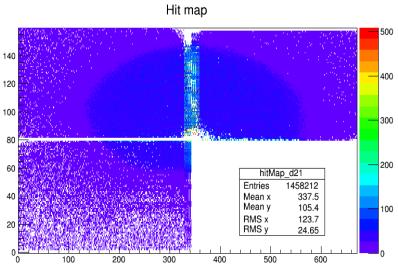
- <u>Reconfigurable Cluster Element System</u>
 - Setting DUT configs and thresholds
- Detector Control System
 - Chip low voltage and bias settings
- Anything else (cooling)
 - Peltier control (team view + labview)
 - additional temperature & humidity monitoring
 DESY Workshop 30/6-2/7

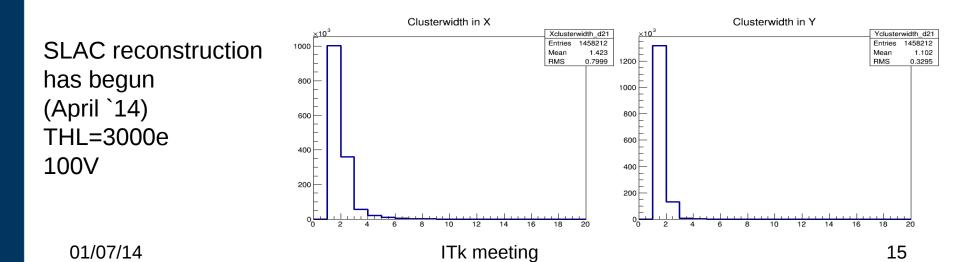
Data taken

Unirradiated

- Quad data taken: 3 regions @ 100V, THL=2500 & 3000e
- 250x50 data taken: 50 & 100V, THL=2500e
- 500x25 data taken: 50 & 100V, THL=1.5, 2, 2.5, 3 ke
- 125x167 data taken: 50 & 100V, THL=2500 & 3000 ke

irradiated

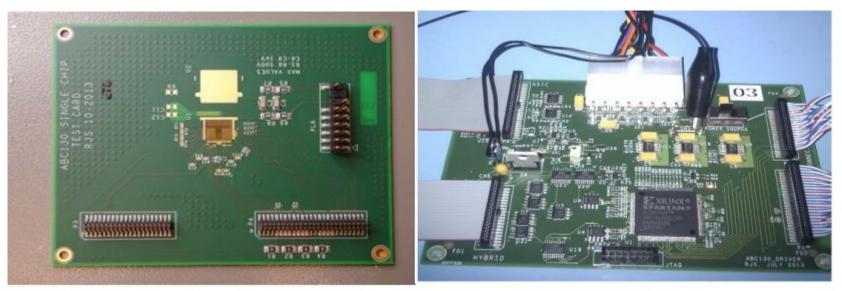

- Quad no data: unable to tune, 8mA @ 15V (no analogue)
- 250x50 data taken: 0V, THL=1.5, 2, 2.5, 3 ke (broken bonds?)
- 500x25 data taken: 100V, THL=1.5, 2, 2.5, 3 ke
- 125x167 data taken: 100V, THL=1.5, 2, 2.5, 3 ke


01/07/14

Post-Testbeam: reconstruction & analysis

- Full results delayed due to software changes
 - TBmonII two required for quad set-up •••
 - EUTelescope overhaul
- Look forward to stable benchmark

Positive Experience


Facility

- Very helpful local support from equipment to personnel
 - Personel: Philippe Grenier, Max Swiatlowski, Carsten Hast, Keith Jobe
 - Equipment: mounts, cables, dry ice
- >21hrs beam/day (2hrs MD); always updated by MCC
- Presence of primary users important i.e. 5->10Hz (+ beam energy)
- Telescope
 - After ironing out a few bugs, everyone gained experience
 - Important to have experts available: Martin, Igor
 - Bonus of triggering from beam
 - DCS system was simple and easy to use: Voltage, humidity, temp
- Detectors
 - Despite customs trouble, managed good runs
 - Multiple devices tested in beam (e.g. Q+2sc, 4sc) DESY Workshop 30/6-2/7

Strips at SLAC

- Strips community are about to use the EUDET telescope for 2 one week long testbeams (Early July)
- ABC next is CMOS readout (made in 130nm process)
 - Goals
 - accurately measure gain of ABC next 130 module
 - Testing the Fast Cluster Finder option on the new ABCn130

The single chip readout board and associated driver board

Testbeam preparation

- Berkeley and UCL worked on integrating strips DAQ with the TLU
- Mechanical fixtures have been made to hold the sensors
- Cabling, PC, DAQ systems have been shipped and supplied for the beam
 - Will interface with HSIO and (for FCF work) Vertex 6 FPGA board
- Specialist single chip readout boards and driver boards were deigned and manufactured for testbeam
 - Interested in studying (74.5um pitch) channels with single hits
 - Compare gain measured to internal calibration circuit in chip

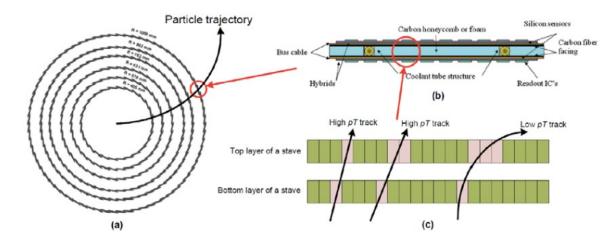
Recon & Analysis

- Previous work at DESY has shown online monitor (correlation plots) to work with HSIO readout with EUDET
 - Aiding alignment
- Will need help with reconstruction of data after testbeam
 - Pixels to Strips.....
 - Even simple question like "what number of event is good enough for 100 strips?"

Conclusions and Next steps

- Positive SLAC experience form PPS (Glasgow)
 - More customers to ESA from strips
- Now have wealth of TB data to analyse (SCs & quads)
 several environments (DESY, SLAC, tbc CERN)
- Full quad reconstruction and analysis software ready(?)
 - EUTelescope improvements ongoing
 - More tracks reconstructed per spill
 - Adaptable DUT geometries: including quad inter-chip pixels
 - New TBmon version compatible with quad set-up
 - Adaptable DUT geometries
- Cooperate: debugging == development

Back up


Back up

01/07/14

FCF option in the ABCn130

- Fast Cluster Finder (FCF) block.
 - The outputs of the FCF block, along with an external correlator, allow to find cluster hit coincidences and relate them to track transverse momentum (pT) information of the incident particles.
 - An initial L0 trigger stage could then be implemented on-chip from that information, by rejecting low momentum incident hits.
 - This is the so-called self-seeded trigger concept: in the stave and petal geometry
 - A high speed input clock (FastCLK, running at 640 MHz), synchronized with the regular 40 MHz BCO
 - An external correlator chip that correlates clusters, selects high pT coincidences and sends a trigger decision is required per pair of modules.

