
EUTelescope v1.0

 Igor Rubinskiy
 DESY

Testbeam telescopes and Detector R&D workshop
DESY, 29 June – 02 July, 2014

Active contributors over the last year:
Tobias Bisanz, Phillip Hamnett, Denys Lontkovskyi, Alex Morton,

Hanno Perrey, Igor Rubinskiy

Y X

Just a reminder: The final goal of the whole test beam

For a DUT we want to know where exactly a particle of known energy passed through the sensor
- lab measurements with sources useful for calibration, limited use, no info about incident point
- put a prototype into a test beam

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 2

precise tracking information at the DUT

Need to get a track information for every DUT:
- X,Y in the DUT local (measurement) frame
- the track incidence angle (

x
,

y
)

The interplay between
– the telescope detector resolution,
– multiple scattering,
– distance between telescope planes
– distance to the DUT (track fit “passive” plane)

Good track pointing resolution needs
good alignment and the X

0
 distribution between the measurement planes

Tracking challenges: tilted sensors, material in cooling box, BField

There are more
low energy beam facilities
not mentioned on this plot

SLAC

DESY

CERN,
FNAL

tracking precision featuring small pixel size & extreme thinness→

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 3

Few years old schematics of the EUTelescope 0.6.3 data workflow

Partially still present in the ./jobsub/examples/
Issues:
1. code per processor too large/ too many parameters/ not readable any more
2. adding new functionality was becoming a challenge/ maintenance → MIP

EUTelescope major refactoring over the last 2 years:
- cleanup: sorting out printout messages, resolving compiler warnings,
 removing unused or not documented code, naming convention(!)

New features:
– introducing new Geometry description based on TGeo, GBL+Millepede,
– revision of tracking information (track as a collection of EUTelTrackState objects)

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 4

Eutelescope v0.6.3 (2011)

Source code history – in lines of code

EUTelescope
v1.0.0beta

Previous slide
Data flow

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 5

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 6

Source code history – github commits

Still based on ILCSoft/Marlin framework and LCIO data format

- operation unit: data Processor to read, process, and save data in LCIO files.

- steering information is provided not via command line , or config files, but as list of
Processors with certain parameters

- very useful feature of ILCSoft: all data IO is hidden

Reconstruction Software EUTelescope

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 7

In the next few slides
– how we see the data flow should be arranged, EUTelescope v1.0.0beta tag.
See: ./jubsub/examples/datura-noDUT/

./jobsub/examples/anemone-2FEI4/

Data types:
– detectors consist of channels of EUTelGenericSparsePixel type
– short x, short y, short signal, short time
– zero suppressed, digital data stream.
– [data of all other types are reducable to this one, let us know if something is not !]

Converter:
– uses EUDAQ data decoder, puts all data into EUTelGenericSparsePixel
– build a map of hot channels (pixels)
– EUTelNativeReader

(Detector description classes were moved to EUDAQ!
Only EUDAQ should know what the RAW data format is)

–- outputs: data in lcio format

Hot Pixels:
– finds and maps only pixels firing above certain threshold
– EUTelProcessorHotPixelMasker

–- outputs: an lcio database collection (one event record)

EUTelescope v1.0.0beta. Fundamental changes to the Library Architecture:

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 8

Clustering:
– nearest neighbor search for sparsified data,
– other algorithms are nearly obsolete [pls share a good one, which is not NNS]
– EUTelProcessorSparseClustering

–- outputs: cluster collection(s) in a new lcio file

Filter [optional step]
– removes clusters if outside of ROI mask
–- EUTelClusterFilter (to be renamed → EUTelProcessorFilterClusters)
– marks or removes hot pixels
–- EUTelProcessorNoisyClusterMasker & EUTelProcessorNoisyClusterRemover

–- outputs: filtered cluster collection(s) in the same lcio file

EUTelescope v1.0.0beta. Fundamental changes to the Library Architecture:

HitMaker (for measurements)
– the name is a bit confusing, this processor returns X and Y position of the cluster in the
sensor measurement frame. Actual “hit” making took place in clustering :)
– prefered: hit in local frame system (option to have hits in global frame kept)
– Geometrywize have to know the pitch and number of rows, columns. No more.
– this is the last step when one can afford to be ignorant to the layout and rotation of
the detectors.

– new: Explicitly using the bit field mask for hits:
– sensorID, [no need to guess SensorID]
– local or global coordinate system
– measured or fitted hit
– contains hot/noisy pixels

EUTelescope v1.0.0beta. Fundamental changes to the Library Architecture:

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 10

EUTelGeometryTelescopeGeoDescription – derived from TGeo,

– interfaces GEAR library now, so NO calls to GEAR are allowed from the rest of the
library,
– can read and write gear files, [GEAR library will become obsolete soon]
– basically a subLibrary:

–- has to know about the “swim” direction, sensor tilts, Bfield.
–- everything about 3D coordinates from SensoID1 to SensorID2,
– hit coordinates transformation from Module plane to Telescope plane

– navigation methods are placed in EUTelGeometryTelescopeGeoDescription and
EUTelTrackStateImpl

Hit coordinate transformation processor:
– EUTelProcessorCoordinateTransformHits
– output new hit collection, with coordinates in global/local coordinate system

–- all geometry related methods are now hidden in
EUTelGeometryTelescopeGeoDescription class

EUTelescope v1.0.0beta. Fundamental changes to the Library Architecture:

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 11

Every object is a volume, related to it's own parent volume by child-parent
coordinate transformation

Can always go by the child-parent
relation chain for every object,
retrieve
- it's volume ID
- local and global coordinates
- vector direction

EUTelescope v1.0beta. Fundamental changes to the Library Architecture:

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 12

Previously used processors to do alignment and tracking are kept:

PreAlignment:
– sensor offsets from Hit correlations (PreAlign processor)

Alignment:
– EUTelMille (very dusty “spagetti” plate, being deprecated)
– with built-in straight line Pattern Recognition (fails < 3 GeV)
– can use external tracking processor for PR
– anyway Millepede needs straight line parameterisation to built input Global and Local
derivatives.

Both above require ReferenceHit collection to keep track of sensor center for
rotation alignment and 3D point identification (guessSensorID)

Broken line trackers:
– EUTelTestFitter

– EUDET implementation of Broken Line math,
–- can not do, tilted sensors, no Bfield

– EUTelDafFitter
– implementation within EUDET
–- can do tilted sensors, but no Bfield

Minimal use of
TGeo in these
processors

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 13

new data type objects:
– EUTelTrackStateImpl :: derived from LCIO::TrackStateImpl

– it's a track parameterisation at a volume (measurement or scattering)
– EUTel is in Cartesian system, X,Y, tx, ty, sensorID

– EUTelTrackerImpl :: derived from LCIO::TrackerImpl
– it's a vector of EUTelTrackStateImpl

Implementation issue: EUTelTrackerImpl and EUTelTrackStateImpl can not be saved
directly to LCIO files, have to rewrite the classes to derive from LCObject.

– being done.

– all TrackState(s) are fitted hits, not required to be on sensitive plane
– the results of the PR is a EUTelTrackerImpl = track candidate vector

EUTelescope v1.0.0beta. Fundamental changes to the Library Architecture:

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 14

Pattern Recognition:
– requires a motion library, hit-to-hit, from SensoID1 to SensorID2,
– has to know about the “swim” direction, sensor tilts, Bfield.

(re)-Implemented in a KalmanFilter processor:
– EUTelProcessorTrackingHelixTrackSearch & EUTelMagneticFieldFinder

Tracking and Alignment
– GBL library which has a built-in interface to Millepede library
– EUTelProcessorTrackingGBL...xxx

– build GBL trajectories and fits
– outputs: TrackStates on all planes including DUTs

Currently working on:
– can Millepede use residuals from broken line fit or it has to be parameteric?
– track parameterisation in Bfield, with a limit B 0.→

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 15

Summary

EUTelescope has gone through the major rewrite of the reconstruction
steps

Release v1.0.0.beta has been tagged, and available for testers. Please
volonteer to try it out with your old and well known data!

More test beam data and use-examples are needed to test different code
paths.

– everyone is welcome to contribute to make your own code better

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 16

A fitted point by origin and information it contains is completely different measurement point

Measurement point = cluster center, comes from the sensor design. And does not know anything
about other sensors.

Fitted point – a point on a sensor surface (X,Y) with a direction vector associated to it, and a
trajectory kink angle – depends on all measured points on this track candidate. Loose relation to the
measurement points through their covariance matrix.

So these objects are of two completely different types:

TrackerHit: SensorID, X, Y [measurement]
TrackState: X, Y, Z, tx, ty, Curvature (~ 1/p) – can be defined for volumes without SensorID

So our new definition of a track is – it a vector of TrackStates with chi2, ndf,

EUTelescope v1.0beta. Fundamental changes to the Library Architecture:

Igor Rubinskiy, “Test beams, Telescopes, and Detector R&D” 17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

