The CMS EPIc Test Beams

Combining an analog ALiBaVa strip DUT with a digital EUDET pixel telescope

Thomas Eichhorn

Telescopes and Testbeams WS 01.07.2014

Outline

- Testbeam setup & measurements
 - Epitaxial strip sensors
 - ALiBaVa & telescope setup
- Integrating an analog strip sensor into a digital pixel telescope
 - ALiBaVa processors for EUTelescope
 - Challenges and changes to EUTelescope

Testbeam Setup and Measurements

Measurement Goals & Program

- Phase II upgrade of the CMS tracker:
 - investigate possible future sensor materials
 - → could epitaxial silicon be a HL-LHC radiation-hard sensor material?

Sensors / irradiations:

- 19 epitaxial, float-zone and magnetic czochralski silicon strip sensors from a CMS vendor run: 64 strips, 80μm pitch, thickness 70μm 200μm,
- Proton irradiations up to Φ = 1.3e16 n_{eq} /cm² at CERN and Los Alamos
- Both n- and p-type material, with p-stop and p-spray isolation
- 5 GeV e⁺/e⁻ from beams 21 & 22 with DATURA and ACONITE telescopes

Measurement program:

- 3 beam incidence angles (0° to 51.3°) to investigate charge sharing
- How are signal/noise levels at different bias voltages (up to ±1000V)?
- Can the sensors still be used after extremely high irradiations?

ALiBaVa Setup

- A Liverpool Barcelona Valencia Read-out System
 - DAQ in-a-box system based on LHCb Beetle chip to read out strip sensor data
 - Motherboard for PC connection and data processing
 - Sensor wirebonded to Daughterboard with Beetle ROC
 - Analog read-out of the 2 * 128 channels every event
 - Serial communication on two differential lines

Rate limited to ~ 150 Hz

Coldbox to mount setup in beam telescope

Signal cable connector

Beetle chip

Pt100 temp read-out

Bias filter

HV

Strip sensor

ALiBaVa Setup in the Testbeam

- Difficult setup goals:
 - Reach -27 °C sensor temperature for highest irradiations
 - Minimize scattering material in beam
 - Movable setup for different beam incidence angles
 - Limit access to beam area: use an Arduino for hardware resets

Trigger

Coolant pipes

HV, signal and temp cables

N₂ supply

Thomas Eichhorn | Combining an analog ALiBaVa strip DUT with a digital EUDET pixel telescope | 01.07.2014 | Page 6

Trigger Synchronisation

- Combination of 2 DAQ systems:
 - Different read-out speeds & memory/buffer sizes
 - Two clocks
 - How to match events offline?

Trigger Logic Unit: Coincidence of all 4 PMTs → Trigger out

Gate

generator

PMT Hit

- Custom gate generator & FPGA solution:
 - Set a global 2.5s 'busy' state every 1000 events
 - Time for ALiBaVa to send data to PC
 - Allows precise event counting
 - Developed by E. Yildirim for ATLAS testbeams

Integrating an analog strip sensor into a digital pixel telesco	pe

Thomas Eichhorn | Combining an analog ALiBaVa strip DUT with a digital EUDET pixel telescope | 01.07.2014 | Page 8

Reconstruction and Analysis Workflow

- Goal: Use telescope to pin-point tracks through the ALiBaVa sensor
- Strategy: Include DUT as a 7th telescope plane

- EUTelescope v00-09-02 and datura-notdut example as a basis
 - Additional processors & some modifications

Data Converter and Telescope Clustering

- ALiBaVa raw data stored in a binary format
 - Convert to LCIO:Raw
- Use existing telescope analysis chain (à la datura-nodut example)
 - Convert to LCIO:Raw
 - Clustering and hot pixel supression
- Multiple telescope runs for one ALiBaVa run:
 - Concatenate option from jobsub:
 - Modify @LCI0InputFiles@ in the steering file → @concatinput@
 - jobsub -c config.cfg --concatenate -option concatinput=.../output/lcio/run@RunRange@-converter.slcio -csv runlist.csv telescope-clustering-concat <startrun>-<endrun>

Reconstruction – Pedestal

Reconstruction – Common Mode

- Common mode: synchronous movement of all channels in an event
 - Final RMS gives sensor noise level

Reconstructed Data

- After pedestal subtraction and common-mode correction:
- Collection(s) of LCIO:TrackerData

■ Here e.g.: 30ns – 50ns

Strip Clustering

- Search for clusters on reconstructed data
- ➤ Clusters only used to create hits → alignment
- S/N cuts for seed (3) and cluster (1.85)

Cluster cut: ~ 7.4 ADCs

Seed cut: ~ 12 ADCs

p-type sensor: negative signals

Strip Clustering – cont.

$$\eta = Q_{left} / (Q_{left} + Q_{right})$$

- Make merge easy: write same cluster format as telescope does:
 - CellIDEncoder <TrackerPulseImpl> zsDataEncoder ("sensorID:5, clusterID:12, xSeed:12, ySeed:12, xCluSize:5, yCluSize:5, type:5", clusterCollectionName);
 - CellIDEncoder <TrackerDataImpl> idClusterEncoder ("sensorID:5, clusterID:12, sparsePixelType:5, quality:5", sparseClusterCollectionVec);
- Caveat: charge is stored as a short :-(
 - Clustersize: ~1.2 for 0° beam incidence angle, 1.5 if rotated to 51°

Merging Data Streams

- Both ALiBaVa and Telescope data streams are in sync on an event basis and have the same number of events
 - Create new TrackerPulse and TrackerData collections with clusters from both systems
- EUTelescope and LCIO framework written for pixel sensors
 - ightarrow 'fake' missing strip sensor coordinate from the average telescope cluster coordinate on neighbour plane in an event

Correlations:

Merging Data Streams – cont.

- Check synchronisation over time / events:
 - In some runs severals telescope runs for one ALiBaVa run → does concatenation work?
 - Beam rate not always steady, sometimes hour-long gaps (e.g. user access)
- Δ = (Telescope_Y / 1152) (Alibava_Y / 128)

Hitmaking

- First 'major' change:
 - EUTelHitmaker.cc expects ZS binary data and disregards actual analog CoG position
 - Fixed by an optional processor parameter to identify analog planes by their sensorid in the cluster

Coordinate systems:

Local

gl. pos = pitch * (- loc. pos + channels/2 - 0.5)

Global

Z

Y

1152
Telescope X

Telescope X

Global

Z

Y

Beam

Alignment

- > After hitmaking, perform 7-plane alignment
- Straight-line track search as input to Millepedell
 - Fix front and end planes to avoid weak modes
 - Shifts in X,Y and α, β, γ rotations considered
- Residual cuts at ± 300µm for telescope planes, ±800µm for DUT plane
- Resulting alignment errors in 5D:
 - Telescope X/Y: ± 400nm
 - DUT X (fake): ± 85 μm
 - DUT Y: ± 1 μm
 - Telescope α, β, γ rotation: ± 0.001 rad
 - DUT α, β, γ rotation: ± 0.005 rad

Track Fitting

- ➤ Telescope & DUT aligned → search for tracks in telescope only!
 - Cuts: X² < 20, require hit in all 6 ('of 7') planes</p>
- > At 5 GeV: ~ 1.55 Tracks / Event
- ightharpoonup Resulting unbiased telescope residuals: $\sigma_{meas} \sim 5 \ \mu m$

Track Display

- CED to visualize tracks
 - Rebuild your EUTelescope installation with (more details in backup):

```
ilcsoft.install( CED( CED_version ))
ilcsoft.module("CED").envcmake['CED_SERVER']='ON'
ilcsoft.install( CEDViewer( CEDViewer_version ))
```

> EUTelEventViewer processor

FYI: screen recording in linux: avconv -f x11grab -r 25 -s 1920x1080 -i :0.0 -vcodec mpeg4 file.avi

NTuple filling & ALiBaVa reconstruction

- Rewrite EUTelFittuple.cc
 - Write telescope hits and tracks to ROOT Ntuple
 - Include the reconstructed DUT ADC data
- Less hits on DUT than in telescope (noise, high cluster cut, etc.)
 - → Predict track impact position
 - → Look into DUT data at impact position
- Impact position:
 - Assume straight line track between telescope planes before and after the DUT
 - Calculate expected hit position of track vector with (rotated) DUT plane
 - Revert rotations, alignment and 'hitmaker' to get expected pixel/strip position
 - Include this information in the Ntuple

NTuple filling & ALiBaVa reconstruction – cont.

- > DUT resolution: If a hit is matched on the DUT
 - Calculate residual from (straight line) track with rotated (γ), aligned (X, Y, α, β, γ) and prealigned (X,Y) DUT plane
- \rightarrow But: σ_{DUT} only 34 µm!
 - Expected:80/sqrt(12) ~ 24 μm
- Improve this how?
 - Non-integer cluster charge
 - Improve 'fake' coordinate selection
 - Iterative alignment

NTuple filling & ALiBaVa reconstruction – cont.

- > 100µm unirr. Epi sensor, 51° rotation
- Residual in Y vs. track impact position

- > Some rotations still not aligned away
- Work in progress

Summary

- 3 runs in TB21, 2 parasitic runs in TB22 resulted in ~300h of data taking
 - Setup installed, connected and running within minutes → real plug and play :-)
- Successful integration of (ALiBaVa) strip sensor data into EUTelescope pixel analysis software framework
 - Minor fixes and changes still needed
 - Final residual not as good as expected yet
 - Add more control plots
 - Code clean-up
- Move to new EUTelescope version after release?
- Final analysis done separately
 - Charge multiplication after irradiation can be seen

Backup

Phase-II Upgrade Motivation

- In 2023: upgrade of the LHC to a High Luminosity-LHC
 - Increase the luminosity by a factor of 5
 - Even harsher radiation environment

ATLAS $t\bar{t}$ event simulation: $<\mu> = 40$

ATLAS $t\bar{t}$ event simulation: $\langle \mu \rangle = 140$

- LHC experiment trackers need to be upgraded to maintain excellent current performance
 - Improve granularity to keep low detector occupancy
 - CMS: tracker to contribute to the Level-1 trigger → new module concept
 - Develop radiation-hard sensors → new sensor technologies

Expected Fluences

- Is epitaxially grown silicon a radiation-hard sensor material?
 - Could it be used for a HL-LHC pixel sensor?
- Current CMS tracker:
 - Design fluence: $4e14 n_{eq}/cm^2 @ r = 20 cm$
- > HL-LHC tracker:
 - Expected fluence 2e15 n_{eq}/cm² @ r = 20cm
 - Fluences > 1e16 n_{eq}/cm² for pixel sensors
- Desired signals:
 - 6000 e⁻ for strip regions
 - 3000 e⁻ could be sufficient for pixel

Sensor List

- > List of successfully measured sensors
 - Epi = epitaxial
 - FTH = float-zone
 - MCZ = magnetic czochralski

Fluence	Epi 100P	Epi 100Y	Epi 100N	Epi 70N	FTH 200Y	MCZ 200P	MCZ 200Y	MCZ 200N
0	V	V		$\sqrt{}$				
1e15 Los Alamos	$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$				
1.5e15 CERN	$\sqrt{}$	V	\checkmark					
3e15 CERN	$\sqrt{}$		V					
1.3e16 CERN	V	V	V		V	V	V	V

DESY-II Testbeam Setup

- Test beam from DESY-II synchrotron
 - Carbon fibre generates a bremsstrahlung beam
 - Metal plate converts photons to e⁺/e⁻ pairs
 - Dipole magnet spreads out beam
 - End collimator cuts out final beam
- DESY beam telescopes
 - Series of parallel Si sensor planes inserted into the particle test beam
 - Reconstruct particle tracks through planes wrt. time and position
 - Use gained information to evaluate device under test (DUT) performance
 - Use telescope to investigate epitaxial sensors

Event Viewer

- How to install and use event-viewer:
 - 1) Go to your ilcinstall directory. In examples/eutelescope, edit release-standalone.cfg

Uncomment or make sure these lines exist:

```
ilcsoft.install( CED( CED_version ))
ilcsoft.module("CED").envcmake['CED_SERVER']='ON'
ilcsoft.install( CEDViewer( CEDViewer_version ))
```

- 2) Rebuild ilcsoft: Make sure \$ILCSOFT is known, e.g. do "export ILCSOFT=/path/to/where/you/are", in the ilcinstall directory do: ./ilcinstall -i examples/eutelescope/release-standalone.cfg
- 3) Wait...
- 4) Source the environment: in ilcsoft/VERSION/Eutelescope/VERSION: source build_env.sh
- 5) Start the display: glced &
- 6) In a new terminal, repeat 4) and run the eutelescope event-viewer: jobsub -c config.cfg -csv runlist.csv event-viewer RUNNUMBER
- 7) Enter moves to the next event, q quits.

Pro tip for the display window: zoom in and turn the background to black.

8) The event-viewer needs hits and tracks. The collections are specified in the steering file or in the config.cfg. Make sure these exist.

