Development of a 3D FE-I4 Quad Plane for AIDA telescopes and of an FE-I4 stand-alone telescope

I. Lopez, E. Cavallaro S. Grinstein, J. Lange

Beam Telescopes and Testbeams for Detector R&D, DESY July, 2014

Development of a 3D FE-I4 Quad Plane for AIDA telescopes

Beam Telescopes and Testbeams for Detector R&D, DESY 2 July, 2014

Introduction

Increase telescope size • ATLAS FEI4 Row MIMOSA26 smaller than some DUTs 0.9 300 MIMOSA26 0.8 \rightarrow Full device efficiency studies are time consuming 250 0.7 (different runs for same DUT) 200 0.6 SALAT/QUAD: ~4x4 cm² telescope planes 0.5 150 0.4 Region Of Interest (ROI) 100 0.3 Sometimes, only a certain region of DUT is wanted 50 to be studied 0.1 10 20 30 40 50 60 70 80 No selection of ROI currently available Column \rightarrow Too many uninteresting triggers in data set crossed scintillators DUT FE-I4 plane 1 plane 0 plane 2 plane 4 QUAD not trig. track $2x2 FE-14Bs \rightarrow \sim 4x4 cm^2$ region track interest Fast HitOr signal (20-30 ns) Region of interest can be chosen particle beam plane 3 plane 5 plane 1 $3D \rightarrow \sim 20 V$ operational voltage $\rightarrow No HV$ needed T. Obermann, Master Thesis 2012

July, 2014

QUAD PCB for FE-I4 single chips

- No plan to make a 3D QUAD single tiles
 - Slim single sensors (~300 μm of dead region between sensors)
- PCB designed for 4 single FE-I4B chips
- Tested with 2 leftover sensors of IBL production (proof-of-principle)
 - Able to cover all hybridization and module assembly line at IFAE!

QUAD PCB first results

Beam Telescopes and Testbeams for Detector R&D, DESY

Conclusions I

- A 2x2 single chip FE-I4B PCB was designed: QUAD
 - 4x4 cm² area for AIDA implementation and ROI
- Full assembly and hybridization (except UBM (IZM)) was successfully performed at IFAE
 - Source scans showed no disconnected bumps region
- Able to operate QUAD device with 2 FE-I4 sensors
- Outlook:
 - Test QUAD PCB with 4xFE-I4
 - Provide QUAD prototype for July CERN TB?
 - How many mounted chips needed?

Development of an FE-I4 stand-alone telescope

Beam Telescopes and Testbeams for Detector R&D, DESY ₇ July, 2014

Introduction

- Test beam in November for AFP at CERN (see J. Lange's presentation)
 - Not clear if ACONITE telescope is available
 - Back up plan \rightarrow build our own stand-alone telescope!
- Material used:
 - 1. USBpix (tabletop ATLAS DAQ system for pixel operation)
 - 2. Burn-In adapter Card (allows the readout of 4 sensors in parallel)
 - 3. 2 scintillators
 - 4. 3 FE-I4A devices
 - 5. Climate chamber
 - 6. Power supplies
 - 7. DAQ PC

July, 2014

8. NIM crate for triggering Very easy to set-up! Goal is integration test (tracking+timing)
But track reco. needed as cross check

Good resolution is not needed:

But track reco. needed as cross-check of integration tests

Beam T

The Telescope

- Uses USBpixl4 5.0.1 software for operation
 - Multi-chip parallel testing
 - Useful as training for QUAD operation (same principle as telescope)
- And a self-made software for analysis
 - Takes .raw data from Source Scan output
 - Used for:
 - Masking
 - Clustering
 - Track reconstruction
 - Alignment
 - Efficiency

Beam Telescopes and Testbeams for Detector R&D, DESY

The Telescope: first tests with cosmics

- First tests → Cosmics
 - Able to perform track reconstruction
 - With enough time (O(weeks)!), able to study overall efficiencies
- Limitations
 - Only DUTs with same chip flavour (FE-I4A/B) than telescope planes
 - Software limitation?
 - Burn-in Card → Maximum of 4 planes (e.g. 3 telescope planes + 1 DUT)
- Question:
 - Can the USBpix+BIC system deal with the SPS testbeam rate?

Track reconstruction of cosmics for alignment \rightarrow Only tracks with hits in all planes

Conclusions II

- November AFP test beam at CERN
 - Likely not to have telescope \rightarrow built our stand-alone telescope
- Uses USBpix set-up/software + self-made software for track reco.
 - Analysis software still under development
- First tests with cosmics
 - Able to cluster, align, reconstruct tracks ...

Back-up

CNM 3D IBL sensors

- Sensor fabricated at CNM-Barcelona
- Double sided process, p-bulk 230 µm thick
- 210 µm columns do not fully penetrate the substrate
- 3D guard-ring with probe pad for IV measurements
- FE-I4 front-end for IBL
 - Array of 80x336 pixels, 50x250 µm² each

Beam Telescopes and Testbeams for Detector R&D, DESY

The Telescope: first tests with cosmics

