Associated MSSM Higgs production with heavy quarks at the LHC (and a brief summary of other work...)

Michael Krämer (RWTH Aachen University & SLAC)

Associated MSSM Higgs production with heavy quarks

• Associated $Q\bar{Q}$ -Higgs production

- is a crucial MSSM Higgs discovery channel
- directly measures the heavy-quark-Higgs Yukawa coupling
- ▶ In the MSSM one has $pp \rightarrow Q\bar{Q} + h, H, A$ and $pp \rightarrow Q\bar{Q}' + H^{\pm}$
- The relative importance depends on the MSSM parameters, in particular tan β, e.g.: $g_{bbH}^{MSSM} = -\frac{\sin \alpha}{\cos \beta} g_{bbH}^{SM} \xrightarrow{\tan \beta \gg 1} \tan \beta g_{bbH}^{SM}$

One objective within project B5 has been to calculate the SUSY-QCD corrections to heavy quark Higgs associated production in the MSSM:

 Neutral MSSM Higgs-boson production with heavy quarks: NLO supersymmetric QCD corrections
 Stefan Dittmaier, Petra Häfliger, MK, Michael Spira, Manuel Walser, Phys. Rev. D90 (2014) 035010

 Charged-Higgs-boson production at the LHC: NLO supersymmetric QCD corrections
 Stefan Dittmaier, MK, Michael Spira, Manuel Walser, Phys.Rev. D83 (2011) 055005

 MSSM Higgs-boson production in bottom-quark fusion: electroweak radiative corrections
 Stefan Dittmaier, MK, Alexander Mück, Tobias Schlüter, JHEP 0703:114,2007 A lof of time in recent years went into calculating numbers which have been used by ATLAS and CMS to interpret MSSM Higgs searches:

Charged Higgs boson production at the LHC

►
$$pp \rightarrow tbH^{\pm}$$
 for $M_{H^{\pm}} \gtrsim m_{top}$

alternative production mechanisms like $q\bar{q}' \rightarrow H^{\pm}, pp \rightarrow H^{\pm} + \text{jet}, pp \rightarrow H^{\pm}W^{\mp}$, or Higgs pair production are suppressed...

Heavy charged Higgs production

4-flavour scheme

 $+ \; {
m exact} \; g
ightarrow b ar{b}$ splitting & mass effects

- no summation of $\ln(M_H/M_b)$ terms

- + summation of $\ln(M_H/M_b)$ terms - LL approximation to $g \rightarrow b\bar{b}$ splitting
- Santander matching [Harlander, MK, Schumacher, CERN-PH-TH/2011-134]

Combine the two schemes with a weight that depends logarithmically on $m_{\rm H}/m_{\rm b}$:

$$\sigma^{\rm matched} = \frac{\sigma^{\rm 4FS} + w\,\sigma^{\rm 5FS}}{1+w}\,, \label{eq:static}$$

with the weight w defined as $w = \ln(m_{\rm H}/m_{\rm b}) - 2$.

Heavy charged Higgs production

- The 4FS and 5FS calculations are available in NLO-SUSY QCD [Plehn PRD67 (2003) 014018; Dittmaier, Krämer, Spira, Walser (PRD83 (2011) 055005)]
- The scale in the 5FS calculation has been set according to the scheme proposed by Maltoni, Ridolfi, Ubiali (JHEP 1207 (2012) 022)

	8 TeV		14 TeV	
$M_{ m H}$ [GeV]	$\tilde{\mu}$ [GeV]	$(m_{ m t}+M_{ m H})/ ilde{\mu}$	$\tilde{\mu}$ [GeV]	$(m_{ m t}+M_{ m H})/ ilde{\mu}$
200	70	5.5	75	4.9
400	95	6.2	105	5.4
600	115	6.7	135	5.8

Theoretical uncertainties include scale variation as well as pdf, m_b and α_s uncertainty, evaluated according to the PDF4LHC and Higgs cross section working group recommendations [Flechl, Klees, MK, Spira, Ubiali 2014]

\sqrt{s} [TeV]	$m_{H^{\pm}}$ [GeV]	$\sigma_{ m NLO}~[{ m pb}]$	Δ^\pm_μ [%]	$\delta^{\pm}_{\mathrm{PDF}+lpha_{s}+m_{b}}$ [%]	$\Delta_{ m tot}^{\pm}$ [%]
8	200	0.192	± 10	±7	±17
	400	0.0291	± 10	±10	±20
	600	0.00617	± 10	± 15	±25
14	200	0.895	± 10	±7	±17
	400	0.175	±9	±8	±18
	600	0.0463	± 9	±9	±18

• overall theoretical uncertainty $\approx 20\%$,

with about equal contributions from scale and parametric uncertainties.

Heavy charged Higgs production: MSSM parameter dependence

 dominant SUSY-QCD (non-decoupling) contributions from corrections to bottom-Higgs Yukawa coupling Δ_b: [Dittmaier, MK, Spira, Walser]

 $\sigma_{\rm NLO} = \sigma_0 \times (1 + \delta_{\rm SUSY-QCD}^{\tan\beta-\rm resum.}) \times (1 + \delta_{\rm QCD} + \delta_{\rm SUSY-QCD}^{\rm remainder})$

$M_{ m H^{\pm}}~[m GeV]$	σ_0 [fb]	$\delta_{ m QCD}$	$\delta_{SUSY-QCD}^{tan \beta-resum.}$	$\delta^{ m remainder}_{ m SUSY-QCD}$
214	545	0.57	-0.30	-0.002
310	234	0.61	-0.30	-0.002
407	109	0.63	-0.30	-0.002

for tan $\beta = 30$ and SUSY point SPS4.

Non-universal SUSY corrections $\delta_{SUSY-QCD}^{remainder}$ can reach up to $\mathcal{O}(10\%)$ for smaller values of tan β .

► MSSM EWK corrections may be significant for a light MSSM spectrum [Jin et al., Belyaev et al., Beccaria et al., Hollik et al.]

... more B5 projects (last four years)

... more B5 projects (last four years)

Precision calculations (mostly for BSM processes)

- NLL/NNLL threshold resummation for squark and gluino production → see Eric Laenen's talk
- NLO-QCD corrections for SUSY particle production and decay with parton showers

Ryan Gavin, Christian Hangst, MK, Margarete Mühlleitner, Mathieu Pellen, Eva Popenda, Michael Spira, Alexander Wlotzka

- Matching and mono-jets for compressed SUSY spectra Herbi Dreiner, MK, Jamie Tattersall
- Electroweak corrections to dark matter annihilation Leila Ali Cavasonza, MK, Mathieu Pellen

 Matching of electroweak corrections and parton showers Alexander Mück, Lennart Oymanns, Manfred Kraus and Christian Weiss

Global fits of supersymmetric models

 \rightarrow can we exclude simple SUSY models like the constrained MSSM?

... more B5 projects: current and beyond

... more B5 projects: current and beyond

