η and η^{\prime} Mixing and the Witten-Veneziano Formula

C. Urbach

HISKP, University of Bonn
Project C7 SFB/TR16

SFB/TR 9 Meeting, Durbach, September 2014

The $U_{A}(1)$ Problem

- nine lightest pseudo-scalar mesons show a peculiar spectrum:
- 3 very light pions (140 MeV)
- kaons and the η around 500 MeV
- η^{\prime} around 1 GeV

- this was called the $U_{A}(1)$-problem
- $M_{\pi} \ll M_{\eta} \ll M_{\eta^{\prime}}$
- in contrast: $\rho-\omega-\phi$ appear ideally mixed as expected from OZI rule
- spontaneously broken chiral symmetry: nine Goldstone bosons?

[Glashow (1968)]

The $U_{A}(1)$ Problem

- the $U(1)$ axial current is anomalous at quantum level
[Adler (1969), Jackiw and Bell (1969)]

$$
\partial^{\mu} A_{\mu}^{0 q}=\partial^{\mu}\left(\bar{q} \gamma_{\mu} \gamma_{5} q\right)=2 m_{q}\left(\bar{q} i \gamma_{5} q\right)+\frac{\alpha_{s}}{4 \pi} F \tilde{F}
$$

and not spontaneously broken

- anomaly vanishes to all orders in perturbation theory at zero momentum
\Rightarrow need additional mechanism
- instantons with non-trivial topology allow to explain η^{\prime} mass
[Kogut, Susskind (1975), Belavin et al. (1975), 't Hooft (1976)]
\Rightarrow suggests consistency of QCD with nature

The Witten-Veneziano Formula

- π, η, η^{\prime} masses can be computed using lattice QCD
- ... but how to establish the relation to the $U_{A}(1)$ anomaly?
- in the 't Hooft limit the Witten-Veneziano formula can be derived ($m_{q}=0, N_{c} \rightarrow \infty, g^{2} N_{c}$ and N_{f} fixed)

$$
M_{\eta^{\prime}}^{2}=\frac{4 N_{f}}{f_{\pi}^{2}} \chi_{\infty}
$$

[Witten (1979), Veneziano (1979)]

- where χ_{∞} is the topological susceptibility in pure Yang-Mills theory
- including $m_{s}>0$ effects

$$
M_{\eta}^{2}+M_{\eta^{\prime}}^{2}-2 M_{K}^{2}=\frac{4 N_{f}}{f_{\pi}^{2}} \chi_{\infty}
$$

- for exact $\operatorname{SU}(3)$ flavour symmetry ($m_{u}=m_{d}=m_{s}$) define (considering only $\bar{q} q$ states ...)
- the flavour octet state η_{8}

$$
\eta_{8} \equiv \frac{1}{\sqrt{6}}\left(\bar{u} i \gamma_{5} u+\bar{d} i \gamma_{5} d-2 \bar{s} i \gamma_{5} s\right)
$$

\Rightarrow a (pseudo) Goldstone boson

- the flavour singlet state η_{0}

$$
\eta_{0} \equiv \frac{1}{\sqrt{3}}\left(\bar{u} i \gamma_{5} u+\bar{d} i \gamma_{5} d+\bar{s} i \gamma_{5} s\right)
$$

\Rightarrow related to $U_{A}(1)$ anomaly

- SU(3) flavour symmetry broken by larger $m_{s}: m_{s} \gg m_{u}=m_{d}=m_{\ell}$
\Rightarrow physical states will be a mixture, e.g.

$$
\binom{|\eta\rangle}{\left|\eta^{\prime}\right\rangle}=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \cdot\binom{\left|\eta_{\ell}\right\rangle}{\left|\eta_{s}\right\rangle}
$$

in the quark flavour basis

$$
\eta_{\ell} \equiv \frac{1}{\sqrt{2}}\left(\bar{u} i \gamma_{5} u+\bar{d} i \gamma_{5} d\right), \quad \eta_{s}=\bar{s} i \gamma_{5} s
$$

- in nature $m_{u} \neq m_{d} \quad \Rightarrow$ also π_{0} mixes
- how did nature arrange the mixing pattern?
- can one determine the mixing angle(s)?

η and η^{\prime} Mixing

- mixing angle definition via Fock states theoretically difficult
\Rightarrow use matrix elements instead

$$
\left(\begin{array}{cc}
\mathbf{P}_{\eta}^{\ell} & \mathbf{P}_{\eta}^{s} \\
\mathbf{P}_{\eta^{\prime}}^{\ell} & \mathbf{P}_{\eta^{\prime}}^{s}
\end{array}\right)=\left(\begin{array}{cc}
c_{\ell} \cos \phi_{\ell} & -c_{s} \sin \phi_{s} \\
c_{\ell} \sin \phi_{\ell} & c_{s} \cos \phi_{s}
\end{array}\right)
$$

defined via pseudo-scalar matrix elements

$$
\mathbf{P}_{P}^{q}=\langle 0| \bar{q} i \gamma_{5} q|P\rangle, \quad P=\eta, \eta^{\prime}, \quad q=\ell, s
$$

- note: usually defined via decay constants obtained from

$$
\langle 0| A_{\mu}^{q} \mid P(p)=i f_{P}^{q} p_{\mu}
$$

with

$$
A_{\mu}^{\ell}=\frac{1}{\sqrt{2}}\left(\bar{u} \gamma_{\mu} \gamma_{5} u+\bar{d} \gamma_{\mu} \gamma_{5} d\right), \quad A_{\mu}^{s}=\bar{s} \gamma_{\mu} \gamma_{5} s
$$

η and η^{\prime} Mixing

- angles are then obtained from

$$
\frac{\mathbf{P}_{\eta^{\prime}}^{\ell}}{\mathbf{P}_{\eta}^{\ell}}=\tan \phi_{\ell}, \quad \frac{\mathbf{P}_{\eta}^{s}}{\mathbf{P}_{\eta^{\prime}}^{s}}=-\tan \phi_{s}
$$

- from χ PT and $1 / N_{c}$ arguments one expects

$$
\left|\phi_{\ell}-\phi_{s}\right| \ll 1
$$

- if correct, define a single angle ϕ obtained from

$$
\tan ^{2} \phi=-\frac{\mathbf{P}_{\eta^{\prime}}^{\ell} \mathbf{P}_{\eta}^{s}}{\mathbf{P}_{\eta}^{\ell} \mathbf{P}_{\eta^{\prime}}^{s}}
$$

- note: all renormalisation constants cancel in the ratios

Motivation

fundamental questions:

- does QCD reproduce the experimental mass pattern?
- how does nature arrange for the mixing?
- can we relate the η^{\prime} mass to the $U_{A}(1)$ anomaly

Challenges

- η, η^{\prime} involve OZI-rule violating diagrams
\Rightarrow so-called fermionic disconnected diagrams
- due to noise computationally challenging
\Rightarrow only few lattice results available
- lattice definition of χ_{t}
- must be cleanly defined
- must be properly renormalised

filled symbols: $\eta \quad$ open: η^{\prime}
[HSC, J. J. Dudek et al., Phys. Rev. D83 (2011)]
[RBC/UKQCD, N. Christ et al., Phys. Rev. Lett. 105 (2010)]
[UKQCD, E. B. Gregory et al., Phys.Rev. D86 (2012)]

Meson Masses and Matrix Elements from Lattice QCD

- let $O(x, t)$ be an operator with quantum numbers of a given state
- for instance for the pion it is given by

$$
O(x, t)=\bar{u} i \gamma_{5} d(x, t), \quad O(t)=\sum_{x} O(x, t)
$$

projected to zero momentum

- create pion at time 0 and annihilate at t

$$
C_{\pi}(t)=\left\langle O(0) O^{\dagger}(t)\right\rangle \propto \sum_{n}\langle 0| O(0)|n\rangle\langle n| e^{-H t} O(0) e^{H t}|0\rangle
$$

inserting a complete set of states $|n\rangle$ and using the time evolution operator $\exp -\mathrm{Ht}$

Meson Masses and Matrix Elements from Lattice QCD

- which leads to

$$
\left.C_{\pi}(t) \propto \sum_{n}|\langle 0| O| n\right\rangle\left.\right|^{2} e^{-\left(E_{n}-E_{0}\right) t}
$$

- and for large times the lowest state dominates

$$
\lim _{t \rightarrow \infty} C_{\pi}(t) \propto e^{-\left(E_{1}-E_{0}\right) t}
$$

- $E_{1}-E_{0}$ corresponds at zero momentum to the mass M_{π}
- and matrix elements of the pion for $n=1$

$$
\langle 0| O|\pi\rangle
$$

- also define effective masses

$$
M=-\frac{d}{d t} \log C_{\pi}(t)
$$

Ensemble-Details $\quad(\rightarrow$ talk of K. Jansen)

- $2+1+1$ quark flavour ensembles from ETM Collaboration $m_{u}=m_{d}<m_{s}<m_{c}$
[ETMC, R. Baron et. al., JHEP 06111 (2010)]
- three lattice spacings (A, B and D ensembles): $a_{A}=0.086 \mathrm{fm}, a_{B}=0.078 \mathrm{fm}$ and $a_{D}=0.061 \mathrm{fm}$
- charged pion masses range from $\approx 230 \mathrm{MeV}$ to $\approx 500 \mathrm{MeV}$
- $L \geq 3 \mathrm{fm}$ and $M_{\pi} \cdot L \geq 3.5$ for most ensembles
- bare m_{s} and m_{c} fixed for each lattice spacing
- use $r_{0}=0.45(2)$ fm (from f_{π}) for η, η^{\prime} r_{0} Sommer scale determined from static $\bar{q} q$ potential
$\Rightarrow r_{0} M$ is dimensionless (with M a mass)

Flavour Singlet Pseudo-Scalar Mesons

- need to estimate correlator matrix

$$
\mathcal{C}=\left(\begin{array}{ll}
\eta_{\ell \ell} & \eta_{\ell s} \\
\eta_{s \ell} & \eta_{s s}
\end{array}\right)
$$

- $\eta_{X Y}$ correlator of appropriate operators, e.g.

$$
\eta_{s s}(t) \equiv\left\langle\bar{s} i \gamma_{5} s(t) \bar{s} i \gamma_{5} s(0)\right\rangle
$$

- connected and disconnected

\underline{t}^{\prime} contributions
- diagonalise matrix \Rightarrow masses M_{P} and matrix elements \mathbf{P}_{P}^{q}
- $P=\eta$: lowest state, $P=\eta^{\prime}$: second state, $P=\eta_{c} \ldots$

η and η^{\prime} Masses Overview

filled symbols: $\eta \quad$ open: η^{\prime}

- η^{\prime} mainly the flavour singlet
- disconnected contributions significant
\Rightarrow very noisy
- chiral extrapolation uncertain
\Rightarrow no clear picture
- need for improvement

[C. Michael, K. Ottnad, S. Reker, C.U., JHEP 1211 (2012) 048]

Effective Mass Plots

- effective masses for $\eta, \eta^{\prime}, \eta_{c}, \ldots$
- η mass well determined
- η^{\prime} :
- at small t / a excited states dominant
- disconnected contributions noisy
\Rightarrow signal lost in noise before plateau reached
- large systematics in η^{\prime}

\Rightarrow need to reduce noise/increase statistics tremendously
or remove excited states to fit at smaller t / a

Effective Mass Plots

- effective masses for $\eta, \eta^{\prime}, \eta_{c}, \ldots$
- η mass well determined
- η^{\prime} :
- at small t / a excited states dominant
- disconnected contributions noisy
\Rightarrow signal lost in noise before plateau reached
- large systematics in η^{\prime}

\Rightarrow need to reduce noise/increase statistics tremendously
or remove excited states to fit at smaller t / a

Improved η^{\prime} Extraction

- recall: disconnected contributions noisy
- lets make an assumption: disconnected contributions couple only to η and η^{\prime} states, not to higher states
[Neff et al. (2001), K.Jansen, C.Michael, C.U. (2008)]
- replace connected contributions by only the ground states
- if assumption justified: there should be a plateau in the effective masses from very low
 times on!

Excited State Removal

w/o removal

- we see a plateau from $t / a=2$ on
- for both η and η^{\prime}
- η : good agreement with previous results
- η^{\prime} : possibly much better determination
- assumption justified?
- systematic uncertainties?

Excited State Removal

w/ removal

- we see a plateau from $t / a=2$ on
- for both η and η^{\prime}
- η : good agreement with previous results
- η^{\prime} : possibly much better determination
- assumption justified?
- systematic uncertainties?

Masses w/ and w/o Excited State Removal

$\eta:$

- masses agree well
- improved precision
η^{\prime} :
- masses determined much better
- always agreement within 2σ
- systematics hard to quantify
w/o removal

Masses w/ and w/o Excited State Removal

$\eta:$

- masses agree well
- improved precision
η^{\prime} :
- masses determined much better
- always agreement within 2σ
- systematics hard to quantify
w/ removal

- can take the difference $\mathrm{w} /$ and w / o to estimate systematics

Strange Quark Mass Dependence

- m_{s} not perfectly tuned to its physical value
- two re-tuned ensembles for a_{A}
\Rightarrow can estimate m_{s} dependence
- estimate

$$
D_{\eta} \equiv \frac{d\left(a M_{\eta}\right)^{2}}{d\left(a M_{\mathrm{K}}\right)^{2}}=1.47(11)
$$

- now assume:
D_{η} independent of

a, m_{ℓ}, m_{s}, m_{c}
- ...correct η masses

Continuum Limit: Scaling Test for M_{η}

- use two ensembles sets (A60, B55, D45) (A40, B35, D30) with $r_{0} M_{\mathrm{PS}} \approx$ const
- correct M_{η} using D_{η} linearly in M_{K}^{2}
$\Rightarrow r_{0} M_{\mathrm{K}}=1.34$ fixed
- compatible with both, constant and linear continuum extrapolation

\Rightarrow lattice artifacts seem under control

Chiral Extrapolation of M_{η}

- now correct all $\left(r_{0} M_{\eta}\right)^{2}$ using D_{η}
$\Rightarrow\left(r_{0} \bar{M}_{\eta}\right)^{2} \propto$ const $+\left(r_{0} M_{\mathrm{PS}}\right)^{2}$
- all a-values fall on the same curve!
- extrapolate $\left(r_{0} \bar{M}_{\eta}\right)^{2}$ linearly in $\left(r_{0} M_{\mathrm{PS}}\right)^{2}$ to $M_{\mathrm{PS}}=M_{\pi}$
\Rightarrow result

$$
M_{\eta}=552(10)_{\text {stat }} \mathrm{MeV}
$$

- similarly with $\left(\bar{M}_{\eta} / \bar{M}_{\mathrm{K}}\right)^{2}$ or GMO
 relation

Chiral Extrapolation of $M_{\eta^{\prime}}$

[PRL 111181602 (2013)]

- no clear dependence on
- lattice spacing
- strange quark mass
- errors still significant
- include all data in extrapolation
- $\left(r_{0} M_{\eta^{\prime}}\right)^{2} \propto$ const $+\left(r_{0} M_{\mathrm{PS}}\right)^{2}$
\Rightarrow result

$$
M_{\eta^{\prime}}=1006(54)_{\text {stat }} \mathrm{MeV}
$$

- fitting A, B and D separately gives
 compatible results

Mixing Angles ϕ_{ℓ} and ϕ_{s}

- $\Delta \phi=3(1)_{\text {stat }}(3)_{\text {sys }}{ }^{\circ}$ confirms expectation, smallness of OZI corrections
- data well described by a single angle
- but cannot exclude a finite difference

- systematic uncertainty from fits to data from different lattice spacings separately

Single Mixing Angle ϕ

[PRL 111181602 (2013)]

- extrapolate ϕ linearly in $\left(r_{0} M_{\mathrm{PS}}\right)^{2}$
$\Rightarrow \phi=46(1)_{\mathrm{stat}}(3)_{\mathrm{sys}}{ }^{\circ}$
- systematic error from fitting different lattice spacings separately
- with $m_{\ell}=m_{s}$ we reproduce the $\mathrm{SU}(3)$ symmetric value 54.7°

- interpretation: η^{\prime} meson mainly the flavour singlet state
\Rightarrow far from ideally mixed

Yang-Mills χ_{∞} from Spectral Projectors

K. Cichy, E. Garcia-Ramos, K. Jansen

- spectral projectors R_{M} allow for a clean definition of χ_{t}
[Giusti, Lüscher, (2009)]

$$
\chi_{t}=\frac{Z_{S}^{2}}{Z_{P}^{2}} \frac{\left\langle\operatorname{Tr}\left[\gamma_{5} R_{M}^{2}\right] \operatorname{Tr}\left[\gamma_{5} R_{M}^{2}\right]\right\rangle}{V}
$$

- spectral projectors estimated stochastically
- dedicated quenched ensembles with Iwasaki gauge action see Cichy, Garcia-Ramos, Jansen (2013) for $N_{f}=2$ and $2+1+1$ results
- four values of the lattice spacing from 0.07 fm to 0.14 fm
- Wilson twisted mass valence quarks
\Rightarrow automatic $\mathcal{O}(a)$ improvement

Continuum Limit χ_{∞} (preliminary)

K. Cichy, E. Garcia-Ramos, K. Jansen

- box length fixed to

$$
L \sim 2.8 \mathrm{fm}
$$

- Z_{S} / Z_{P} computed with spectral projectors
- linear scaling in a^{2} as expected
\Rightarrow continuum limit:
$r_{0}^{4} \chi_{\infty}=0.049(6)$

- using $r_{0}=0.5 \mathrm{fm} \quad \Rightarrow \quad \chi_{\infty}=(185(6) \mathrm{MeV})^{4}$
\Rightarrow WV formula well fulfilled with physical mass values

Witten-Veneziano Formula (preliminary)

K. Cichy, E. Garcia-Ramos, K. Jansen, K. Ottnad, F. Zimmermann, C.U.

- define

$$
M_{U_{A}(1)}^{2}=M_{\eta}^{2}+M_{\eta^{\prime}}^{2}-2 M_{K}^{2}
$$

- extrapolates almost constant in M_{PS}^{2}
- systematics very similar to $M_{\eta^{\prime}}$
- dominant statistical noise
- the extrapolated value agrees with separat mass extrapolations
\Rightarrow to be investigated further

Summary

- study $U_{A}(1)$ problem in LQCD
- η, η^{\prime} mixing angle

$$
\phi=46(1)_{\text {stat }}(3)_{\text {sys }}{ }^{\circ}
$$

- η, η^{\prime} masses

$$
\begin{aligned}
M_{\eta} & =551(8)_{\mathrm{stat}}(6)_{\mathrm{sys}} \mathrm{MeV} \\
M_{\eta^{\prime}} & =1006(54)_{\mathrm{stat}}(38)_{\mathrm{sys}}(+61)_{\mathrm{ex}} \mathrm{MeV}
\end{aligned}
$$

- Yang-Mills χ_{∞}

$$
\chi_{\infty}=(185(6) \mathrm{MeV})^{4}
$$

from spectral projectors
[HSC, J. J. Dudek et al., Phys. Rev. D83 (2011)]
[RBC/UKQCD, N. Christ et al., Phys. Rev. Lett. 105 (2010)] [UKQCD, E. B. Gregory et al., Phys.Rev. D86 (2012)]
[ETMC, C. Michael et al., PRL 111 (2013)]

- test of Witten-Veneziano formula

