Threshold resummation of heavy (s)particles pair production at hadron colliders

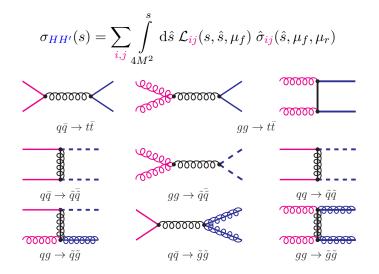
Jan Piclum

RWTHAACHEN

based on:

M. Beneke, P. Falgari, C. Schwinn, Nucl. Phys. B 828 (2010) 69 M. Beneke, P. Falgari, C. Schwinn, Nucl. Phys. B 842 (2011) 414 M. Beneke, P. Falgari, S. Klein, C. Schwinn, Nucl. Phys. B 855 (2012) 695 M. Beneke, P. Falgari, S. Klein, JP, C. Schwinn, M. Ubiali, F. Yan, JHEP 07 (2012) 195 M. Beneke, P. Falgari, JP, C. Schwinn, C. Wever, in preparation

Total Cross Section for $pp \rightarrow HH'X$



heavy (s)particles \Rightarrow production close to threshold

Jan Piclum (RWTH Aachen)

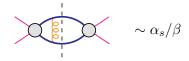
Dominant Terms

threshold limit: $\beta = \sqrt{1 - 4M^2/\hat{s}} \rightarrow 0$, $M = (m_H + m_{H'})/2$

Sterman 1987; Laenen et al. 1991; Catani et al.; Berger, Contopanagos; Kidonakis et al. 1996; Bonciani et al. 1998

Soft corrections:

Coulomb corrections:

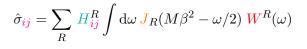


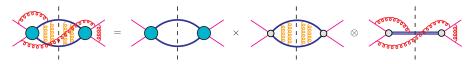
 $\alpha_s/\beta \sim 1$, $\alpha_s \ln \beta \sim 1 \rightsquigarrow$ resum terms to all orders

Resummation in Momentum Space

Soft and Coulomb resummation:

Beneke, Falgari, Schwinn 2009, 2010



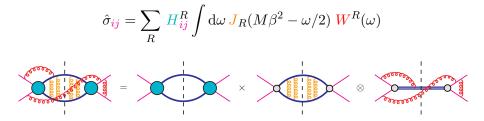


4 / 13

Resummation in Momentum Space

Soft and Coulomb resummation:

Beneke, Falgari, Schwinn 2009, 2010



• factorisation formula is derived in EFT framework:

- SCET for soft and collinear modes
- pNRQCD for potential and soft modes
- factorisation of soft and Coulomb interaction is non-trivial
- soft function can be diagonalised by choice of colour basis

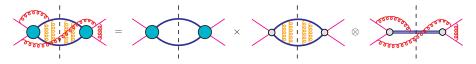
4 / 13

Resummation in Momentum Space

Soft and Coulomb resummation:

Beneke, Falgari, Schwinn 2009, 2010

$$\hat{\sigma}_{ij} = \sum_{R} H_{ij}^{R} \int d\omega J_{R} (M\beta^{2} - \omega/2) W^{R}(\omega)$$



$$\hat{\sigma} \propto \hat{\sigma}^{(0)} \sum_{k} \left(\frac{\alpha_{s}}{\beta}\right)^{k} \exp[\underbrace{\ln \beta g_{0}(\alpha_{s} \ln \beta)}_{\text{LL}} + \underbrace{g_{1}(\alpha_{s} \ln \beta)}_{\text{NLL}} + \underbrace{\alpha_{s} g_{2}(\alpha_{s} \ln \beta)}_{\text{NNLL}} + \dots] \times \{1 \text{ (LL, NLL)}; \alpha_{s}, \beta \text{ (NNLL)}; \dots \}$$

Resummation of Soft Logarithms

Becher, Neubert, Pecjak 2006; Becher, Neubert, Xu 2007; Beneke, Falgari, Schwinn 2009; Czakon, Mitov, Sterman 2009

- typical scales: $\mu_h \sim 2M \text{, } \mu_s \sim M\beta^2$
- hard and soft function obey RGEs
- solve RGEs in momentum space

$$\mu_{h} - H(m_{H}, m_{H'}, \mu_{h})$$

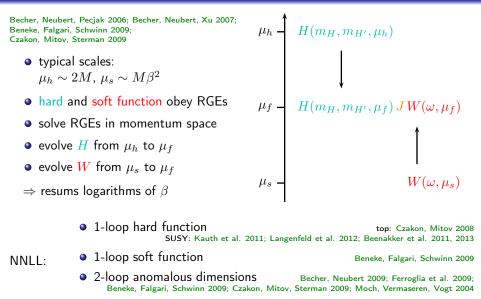
$$\mu_{f} - \mu_{s} - W(\omega,$$

 μ_s)

Resummation of Soft Logarithms

Becher, Neubert, Pecjak 2006; Becher, Neubert, Xu 2007; $\mu_h - H(m_H, m_{H'}, \mu_h)$ Beneke, Falgari, Schwinn 2009; Czakon, Mitov, Sterman 2009 • typical scales: $\mu_h \sim 2M, \ \mu_s \sim M\beta^2$ $H(m_H, m_{H'}, \mu_f) J W(\omega, \mu_f)$ hard and soft function obey RGEs • solve RGEs in momentum space • evolve *H* from μ_h to μ_f μ_s – • evolve W from μ_s to μ_f $W(\omega, \mu_s)$ \Rightarrow resums logarithms of β

Resummation of Soft Logarithms



• 3-loop cusp anomalous dimension

Moch, Vermaseren, Vogt 2005

Resummation of Coulomb Corrections

Resummation of Coulomb corrections from non-relativistic Greens function

Fadin, Khoze 1987; Peskin, Strassler 1990; ...

$$\begin{bmatrix} -\frac{\vec{\nabla}^2}{2m_{\rm red}} + D_R \frac{\alpha_s}{r} \end{bmatrix} G_{C,R}^{(0)}(\vec{r},\vec{r}',E) = \delta(\vec{r}-\vec{r}')$$
$$J_R(E) = 2 \operatorname{Im} G_{C,R}^{(0)}(0,0;E) , \quad E = \sqrt{\hat{s}} - 2M$$

- includes bound states below threshold (E < 0)
- depends on Coulomb scale: $\mu_C = \max\{2\alpha_s(\mu_C)m_{\rm red}|D_R|, 2\sqrt{2m_{\rm red}M}\beta\}$

7 / 13

Resummation of Coulomb Corrections

Resummation of Coulomb corrections from non-relativistic Greens function

Fadin, Khoze 1987; Peskin, Strassler 1990; ...

$$\begin{bmatrix} -\frac{\vec{\nabla}^2}{2m_{\rm red}} + D_R \frac{\alpha_s}{r} \end{bmatrix} G_{C,R}^{(0)}(\vec{r},\vec{r}',E) = \delta(\vec{r}-\vec{r}')$$
$$J_R(E) = 2 \operatorname{Im} G_{C,R}^{(0)}(0,0;E) , \quad E = \sqrt{\hat{s}} - 2M$$

- includes bound states below threshold (E < 0)
- depends on Coulomb scale: $\mu_C = \max\{2\alpha_s(\mu_C)m_{\rm red}|D_R|, 2\sqrt{2m_{\rm red}M}\beta\}$ corrections at NNLL:
 - NLO Coulomb potential $\rightsquigarrow \mathcal{O}(\alpha_s^2/\beta)$
 - NNLO non-Coulomb potential and kinetic energy $\rightsquigarrow \mathcal{O}(\alpha_s^2 \ln \beta)$
 - Coulomb Green function in s-channel exchange $\rightsquigarrow \mathcal{O}(\alpha_s^2 \ln \beta)$

Bärnreuther, Czakon, Fiedler 2013

$$J_{R}^{\mathsf{NNLL}}(E) = 2 \operatorname{Im} \left[G_{C,R}^{(0)}(0,0;E) \,\Delta_{\mathrm{nC}}(E) + G_{C,R}^{(1)}(0,0;E) \right]$$

$$J_R^{\text{NNLL}}(E) = 2 \operatorname{Im} \left[G_{C,R}^{(0)}(0,0;E) \,\Delta_{\mathrm{nC}}(E) + G_{C,R}^{(1)}(0,0;E) \right]$$

NLO Coulomb potential:

$$\delta \tilde{V}_{\mathsf{NLO}} = \frac{D_R \alpha_s^2}{\vec{q}^2} \left(a_1 - \beta_0 \ln \frac{\vec{q}^2}{\mu^2} \right) \quad \rightsquigarrow \quad G_{C,R}^{(1)}(0,0;E)$$

$$J_R^{\text{NNLL}}(E) = 2 \operatorname{Im} \left[G_{C,R}^{(0)}(0,0;E) \,\Delta_{\mathrm{nC}}(E) + G_{C,R}^{(1)}(0,0;E) \right]$$

NLO Coulomb potential:

$$\delta \tilde{V}_{\mathsf{NLO}} = \frac{D_R \alpha_s^2}{\vec{q}^2} \left(a_1 - \beta_0 \ln \frac{\vec{q}^2}{\mu^2} \right) \quad \rightsquigarrow \quad G_{C,R}^{(1)}(0,0;E)$$

NNLO non-Coulomb potential:

$$\begin{split} \delta \tilde{V}_{\text{NNLO}} &= \frac{4\pi D_R \alpha_s}{\vec{q}^2} \left[\frac{\pi \alpha_s |\vec{q}|}{8m_{\text{red}}} \left(\frac{D_R m_{\text{red}}}{M} + C_A \right) + \frac{\vec{p}^2}{m_H m_{H'}} \right. \\ &\left. - \frac{\vec{q}^2}{8m_H^2 m_{H'}^2} \left(2m_H m_{H'} + m_H^2 c_2(m_{H'}) + m_{H'}^2 c_2(m_H) \right) \right. \\ &\left. + \frac{1}{16m_H m_{H'}} \left[\sigma^i, \sigma^j \right] q^j \otimes \left[\sigma^i, \sigma^k \right] q^k + \dots \right] \end{split}$$

$$\Rightarrow \Delta_{\rm nC}(E) = 1 + \alpha_s^2 \ln \beta \left[-2D_R^2 \left(1 + v_{\rm spin} \right) + D_R C_A \right] \theta(E)$$

$$v_{\rm spin}(\tilde{q}\bar{\tilde{q}},\tilde{q}\tilde{q}) = \frac{-m_{\rm red}}{2M} \,, \; v_{\rm spin}(\tilde{q}\tilde{g}) = \frac{1}{2} \left(\frac{m_{\tilde{g}}^2}{(m_{\tilde{q}} + m_{\tilde{g}})^2} - 1 \right) \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=0) = 0 \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=1) = -\frac{2}{3} \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=0) = 0 \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=1) = -\frac{2}{3} \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=0) = 0 \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=0) = 0 \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g}\tilde{g},S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g}\tilde{g},S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g}\tilde{g}\tilde{g};S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g}\tilde{g}\tilde{g};S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g}\tilde{g};S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g};S=0) \,, \; v_{\rm$$

$$J_R^{\text{NNLL}}(E) = 2 \operatorname{Im} \left[G_{C,R}^{(0)}(0,0;E) \,\Delta_{\mathrm{nC}}(E) + G_{C,R}^{(1)}(0,0;E) \right]$$

NLO Coulomb potential:

$$\delta \tilde{V}_{\mathsf{NLO}} = \frac{D_R \alpha_s^2}{\vec{q}^2} \left(a_1 - \beta_0 \ln \frac{\vec{q}^2}{\mu^2} \right) \quad \rightsquigarrow \quad G_{C,R}^{(1)}(0,0;E)$$

NNLO non-Coulomb potential:

$$\begin{split} \delta \bar{V}_{\text{NNLO}} &= & \frac{4\pi D_R \alpha_s}{\vec{q}^2} \left[\frac{\pi \alpha_s |\vec{q}|}{8m_{\text{red}}} \left(\frac{D_R m_{\text{red}}}{M} + C_A \right) + \frac{\vec{p}^2}{m_H m_{H'}} \right. \\ & - & \frac{\vec{q}^2}{8m_H^2 m_{H'}^2} \left(2m_H m_{H'} + m_H^2 c_2(m_{H'}) + m_{H'}^2 c_2(m_H) \right) \\ & + & \frac{1}{16m_H m_{H'}} \left[\sigma^i, \sigma^j \right] q^j \otimes \left[\sigma^i, \sigma^k \right] q^k + \dots \left] + \frac{4\pi \alpha_s}{M^2} v_{\text{ann}}^R \end{split}$$

$$\rightarrow \Delta_{\rm nC}(E) = 1 + \alpha_s^2 \ln \beta \left[-2D_R^2 \left(1 + v_{\rm spin} \right) + D_R C_A + \frac{4m_{\rm red}}{M^2} D_R v_{\rm ann}^R \right] \theta(E)$$

$$v_{\rm spin}(\tilde{q}\bar{\tilde{q}},\tilde{q}\tilde{q}) = \frac{-m_{\rm red}}{2M} \,, \; v_{\rm spin}(\tilde{q}\tilde{g}) = \frac{1}{2} \left(\frac{m_{\tilde{g}}^2}{(m_{\tilde{q}} + m_{\tilde{g}})^2} - 1 \right) \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=0) = 0 \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=1) = -\frac{2}{3} \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=0) = 0 \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=1) = -\frac{2}{3} \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=0) = 0 \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=0) = 0 \,, \; v_{\rm spin}(\tilde{g}\tilde{g},S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g}\tilde{g},S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g}\tilde{g},S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g}\tilde{g}\tilde{g};S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g}\tilde{g}\tilde{g};S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g}\tilde{g};S=0) \,, \; v_{\rm spin}(\tilde{g}\tilde{g};S=0) \,, \; v_{\rm$$

Matching to Fixed Order Cross Section

- match to fixed order result to improve behaviour at large β

$$\hat{\sigma}^{\mathsf{NNLL}+\mathsf{NNLO}_{(\mathsf{app})}} = \left(\hat{\sigma}^{\mathsf{NNLL}} - \hat{\sigma}^{\mathsf{NNLL}}\big|_{\mathsf{NNLO}}\right) + \hat{\sigma}^{\mathsf{NNLO}_{(\mathsf{app})}}$$

Matching to Fixed Order Cross Section

- ullet threshold approximation is good for $4M^2\gtrsim 0.2\,s$ $_{
 m Becher,\ Neubert,\ Xu\ 2007}$
- $\bullet\,$ match to fixed order result to improve behaviour at large $\beta\,$

$$\hat{\sigma}^{\mathsf{NNLL}+\mathsf{NNLO}_{(\mathsf{app})}} = \left(\hat{\sigma}^{\mathsf{NNLL}} - \hat{\sigma}^{\mathsf{NNLL}}\big|_{\mathsf{NNLO}}\right) + \hat{\sigma}^{\mathsf{NNLO}_{(\mathsf{app})}}$$

top: match to full NNLO result [Czakon, Fiedler, Mitov 2013] SUSY: $\sigma^{\text{NNLO}_{app}} = \sigma^{\text{NLO}}[\text{PROSPINO}] + \sigma^{\text{NNLO}}[\mathcal{O}(\alpha^2), \text{soft+Coulomb}]$ [PROSPINO: Beenakker, Höpker, Spira 1996]

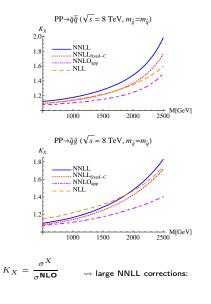
Top Results

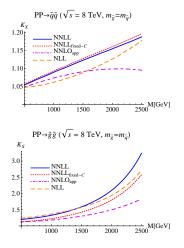
$\sigma_{t\bar{t}}~[{\rm pb}]$	Tevatron	LHC @ 7 TeV	LHC @ 8 TeV
NLO	$6.68 {}^{+0.36}_{-0.75} {}^{+0.23}_{-0.22}$	$158.1^{+19.5}_{-21.2}{}^{+6.8}_{-6.2}$	$226.2^{+27.8}_{-29.7}{}^{+9.2}_{-8.3}$
NNLO	$7.01 {}^{+0.27}_{-0.37} {}^{+0.29}_{-0.24}$	$167.1^{+6.7}_{-10.7}{}^{+7.7}_{-7.1}$	$239.1 {}^{+9.3}_{-14.8} {}^{+10.3}_{-9.6}$
NNLL+NNLO	$7.15^{+0.24}_{-0.10}{}^{+0.30}_{-0.25}$	$168.5^{+6.3}_{-7.5}{}^{+7.7}_{-7.0}$	$241.0^{+8.7}_{-11.1}{}^{+10.5}_{-9.7}$
experiment	7.60 ± 0.41	173 ± 10	242.4 ± 9.5

obtained with TOPIXS 2.0 using m_t =173.3 GeV, MSTW 2008 NLO/NNLO, $\alpha_s(M_Z) = 0.1171$ NNLO uses results by Bärnreuther, Czakon, Mitov, Fiedler experiment: Tevatron combination; LHC combination; ATLAS 1406.5375 using m_t =172.5 GeV

- good agreement with experiment and Mellin space result by Cacciari, Czakon, Mangano, Mitov, Nason
- resummation improves theory uncertainty
- theory uncertainty $\sim\pm$ 3–5%
- PDF+ α_s uncertainty $\sim \pm$ 4–5%
- calculation has been implemented in public program TOPIXS

SUSY Results: K Factors

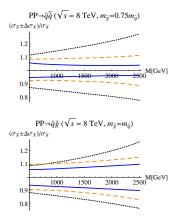




- 10-200% of NLO
- 0-40% on top of NLL
- 0-150% beyond NNLO
- Coulomb resummation can be large effect

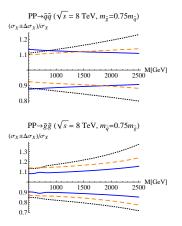
soft resummation in Mellin space \rightarrow talk by Eric Laenen

SUSY Results: Uncertainties



theoretical uncertainties:

- scale variation: μ_f , μ_h , μ_C
- estimate of NNLO constant
- β_{cut} for running soft scale
- $E = M\beta^2$ vs. $E = \sqrt{\hat{s}} 2M$



reduced uncertainty at NNLL:

- NLO: ±(20-30)%
- NLL: ±(10-20)%
- NNLL: ±(5-14)%

12 / 13

- formalism for combined resummation of soft and Coulomb gluons in momentum space has been developed
- total cross section for top-pair production has been computed at NNLL+NNLO
- total cross section for pair production of gluinos and squarks has been computed at NNLL+NNLO_{app}
- results for top-pair production have been published in the public program TOPIXS
- public program for sparticle pairs is in preparation

fixed soft scale:

Becher, Neubert, Xu 2007

- minimises relative fixed-order 1-loop soft correction to $\sigma_{HH'}$
- resums logarithms in hadronic cross section
- does not predict partonic cross section

alternative method: logarithmic derivative of parton luminosity

Sterman, Zeng 2013

running soft scale:

Beneke, Falgari, Klein, Schwinn 2011

- divide β integration into two regions
- $\beta < \beta_{cut}$: small ambiguities, $\mu_s = M \beta_{cut}^2$
- $\beta > \beta_{\rm cut}:$ no large logarithms, $\mu_s = M\beta^2$
- for $\tilde{g}\tilde{g}$: $\beta_{\text{cut}} = 0.50 0.39$ (LHC7), $\beta_{\text{cut}} = 0.52 0.40$ (LHC14)

Falgari, Schwinn, Wever 2012