MASSIVE TADPOLES:

Techniques & Applications

I. RHO-PARAMETER

II. QUARK MASSES

III. MISCELLANEOUS

J. Kühn / Project A1

I. RHO-PARAMETER

- 1. Definition, work before 2003
- 2. Three-loop electroweak results with full m_H -dependence (Faisst, JK, Seidensticker, Veretin)
- **3**. Four-loop QCD contributions, $\mathcal{O}\left(G_F \alpha_s^3\right)$ (Chetyrkin, Faisst, JK, Maierhöfer, Meier, Sturm)

I.1 Definition, work before 2003

central prediction of SM:

$$M_W = f(\underbrace{G_F, M_Z, \alpha}_{\text{Born}}; \underbrace{M_t, M_H, \dots}_{\text{radiative corrections}})$$

[similarly for couplings of fermions: $\sin^2 \theta_{eff}$]

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} (1 + \Delta r)$$

$$\Delta r$$
 dominated by: $\Delta r = -\frac{c^2}{s^2} \Delta \rho + \Delta \alpha$
 $\Delta \rho \sim \left(G_F M_t^2 \right) + \dots$ (Veltman)

aim: compete with experiment

δM_W [MeV]	δM_t [GeV]	
33	5	status 2003 (LEP, TEVATRON)
15	0.76	now (TEVATRON, LHC)
$8 \rightarrow 5$	0.6	aim (LHC), theory limited
3, < 1.2	0.1 - 0.2	ILC, TLEP

theory: correlation (for $\alpha(M_Z), M_H$ fixed): $\delta M_W \approx 6 \cdot 10^{-3} \, \delta M_t$

$$\Rightarrow$$
 shifts in $M_W \lesssim \left\{ \begin{array}{l} 5 \text{ MeV} \\ 1 \text{ MeV} \end{array} \right\}$ are relevant for $\left\{ \begin{array}{l} LHC \\ e^+e^- \end{array} \right.$ collider

Theory: Status 2002

status: two-loop $\begin{cases}
 Barbieri, Beccaria, Ciafaloni, Curci, Vicere \\
 Fleischer, Jegerlehner, Tarasov
 \end{aligned}$ approximation: $M_t^2 \gg M_W^2 \implies$ scalar bosons only, gaugeless limit

$$\Delta \rho = X_t^2 f(M_t/M_H)$$
 with $X_t \equiv \frac{G_F M_t^2}{8\sqrt{2}\pi^2} = \frac{g_{\text{Yukawa}}^2}{16\pi^2}$

status: three-loop $M_H = 0$

(van der Bij, Chetyrkin, Faisst, Jikia, Seidensticker)

poor approximation, leads to tiny corrections for terms of order $X_t^{\rm 3}$ and $\alpha_s X_t^{\rm 2}$

 $M_H \neq 0$ (Faisst, JK, Seidensticker, Veretin, 2003) requires: 3-loop tadpoles ($\Pi_{WW}(0), \Pi_{ZZ}(0)$)

and two-loop on-shell diagrams: $M_t \iff m_t(\overline{MS})$

in general two (!) mass scales, three loops

special cases:

 $M_H = 0$: $\sqrt{M_H \gg M_t}$: hard mass expansion in $(M_t^2/M_H^2)^n$ mod. log $M_H = M_t$: one scale

 M_H in neighbourhood of M_t :

Taylor expansion: $\delta = (M_H - M_t)/M_t$

excellent approximation

 \Rightarrow reduction to one-scale two- or three-loop integrals

Contributions of order $\alpha_s X_t^2$ to $\Delta \rho$ in the on-shell definition of the top quark mass. The black squares indicate the points where the exact result is known.

$$M_H = (0|126) \Rightarrow \Delta \rho(\alpha_s X_t^2) = (2.9|120)$$

 $\delta M_W \approx 2.3 \ {\rm MeV}$ $\delta \sin^2 \theta_{\rm eff} \approx 1.5 \cdot 10^{-5}$

δM_W in MeV	α_s^0	α_s^1	α_s^2
M_t^2	611.9	-61.3	-10.9
const.	136.6	-6.0	-2.6
$1/M_t^2$	-9.0	-1.0	-0.2

four loop?

Techniques:

3-loop $M_{\text{pole}} \Leftrightarrow \bar{m}$ relation (1999/2000)

(Chetyrkin+Steinhauser, Melnikov+van Ritbergen)

and 4-loop tadpoles: Laporta algorithm

[previously: 3 loop tadpoles \Rightarrow recursive algorithm (Broadhurst, Steinhauser: MATAD)]

analytical and numerical evaluation of \sim 50 four-loop master integrals:

difference equations, semi-numerical integration

result (2006) (Chetyrkin, Faisst, JK, Maierhöfer, Sturm)

result immediately independently confirmed (Boughezal+Czakon)

conversion to pole mass:

$$\delta \rho_t^{(4 \text{ loop})} = 3 \frac{G_F M_t^2}{8\sqrt{2}\pi^2} \alpha_s^3 (-93.1501)$$

corresponds to a shift $\delta M_W \sim 2$ MeV (similar to $\mathcal{O}(x_t^2 \alpha_s)$)

II. QUARK MASSES

from relativistic 4 loop moments

- 1. Why
- 2. Theory
- 3. Results, from experiment and from lattice

in collaboration with

K. Chetyrkin, Y. Kiyo, A. Maier, P. Maierhöfer, P. Marquard, A. Smirnov,

M. Steinhauser, C. Sturm and the HPQCD Collaboration

II.1 WHY precise masses?

B-decays: $\Gamma(B \to X_{\rm u} l \bar{\nu}) \sim G_{\rm F}^2 m_{\rm b}^5 |V_{\rm ub}|^2$ $\Gamma(B \to X_{\rm c} l \bar{\nu}) \sim G_{\rm F}^2 m_{\rm b}^5 f(m_{\rm c}^2/m_{\rm b}^2) |V_{\rm cb}|^2$ $B \to X_{\rm S} \gamma$

comparison with Υ -spectroscopy: $M(\Upsilon(1s)) = 2M_{b} - \left(\frac{4}{3}\alpha_{s}\right)^{2}\frac{M_{b}}{4} + ... + \text{ excitations}$ (Penin & Zerf,... $\delta m_{b} \sim 9 \text{ MeV}$)

H decay (ILC, TLEP)

Theory uncertainty $(M_H/3 < \mu < 3M_H)$: 5‰ (four loop) reduced to 1.5‰ (five loop)

present uncertainties from m_b

 $m_b(10 \text{ GeV}) = 3610 - \frac{\alpha_s - 0.1189}{0.002} 12 \pm 11 \text{ MeV}$ (Karlsruhe, arXiv:0907.2110)

running from 10 GeV to M_H depends on anomalous mass dimension, β -function and α_s

 $m_b(M_H) = 2759 \pm 8|_{m_b} \pm 27|_{\alpha_s} \text{ MeV}$ aim $\pm 4 \text{ MeV} \ (\cong 1.5 \times 10^{-3})$ $\gamma_4 \ (\text{five loop}): \text{ Baikov} + \text{ Chetyrkin, 2013}$ $\beta_4 \text{ under construction}$ $\delta m_1^2(M_H)$

 $\frac{\delta m_b^2(M_H)}{m_b^2(M_H)} = -1.4 \times 10^{-4} (b_4 = 0) \mid -4.3 \times 10^{-4} (b_4 = 100) \mid -7.3 \times 10^{-4} (b_4 = 200)$

to be compared with $\delta\Gamma/\Gamma = 2.0 \times 10^{-3}$ (TLEP)

Yukawa Unification

 $\lambda_{\tau} \sim \lambda_{b}$ or $\lambda_{\tau} \sim \lambda_{b} \sim \lambda_{t}$ at GUT scale top-bottom $\rightarrow m_{t} / m_{b} \sim$ ratio of vacuum expectation values request $\frac{\delta m_{b}}{m_{b}} \sim \frac{\delta m_{t}}{m_{t}} \Rightarrow \delta m_{t} \approx 0.5 \text{ GeV} \Rightarrow \delta m_{b} \approx 12 \text{ MeV}$ II.2 Theory

 m_Q from SVZ Sum Rules, Moments and Tadpoles

Some definitions:

$$\left(-q^2 g_{\mu\nu} + q_{\mu} q_{\nu}\right) \Pi(q^2) \equiv i \int dx \, e^{iqx} \langle T j_{\mu}(x) j_{\nu}(0) \rangle$$

with the electromagnetic current j_{μ} .

$$R(s) = 12\pi \operatorname{Im} \left[\Pi(q^2 = s + i\epsilon) \right]$$

Taylor expansion:
$$\Pi_Q(q^2) = Q_Q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \overline{C}_n z^n$$

with $z = q^2/(4m_Q^2)$ and $m_Q = m_Q(\mu)$ the $\overline{\text{MS}}$ mass.

$$\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s}{\pi} \bar{C}_n^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \bar{C}_n^{(2)} + \left(\frac{\alpha_s}{\pi}\right)^3 \bar{C}_n^{(3)} + \dots$$

generic form

$$\begin{split} \bar{C}_n &= \bar{C}_n^{(0)} \\ &+ \frac{\alpha_s}{\pi} \Big(\bar{C}_n^{(10)} + \bar{C}_n^{(11)} l_{m_c} \Big) \\ &+ \Big(\frac{\alpha_s}{\pi} \Big)^2 \Big(\bar{C}_n^{(20)} + \bar{C}_n^{(21)} l_{m_c} + \bar{C}_n^{(22)} l_{m_c}^2 \Big) \\ &+ \Big(\frac{\alpha_s}{\pi} \Big)^3 \Big(\bar{C}_n^{(30)} + \bar{C}_n^{(31)} l_{m_c} + \bar{C}_n^{(32)} l_{m_c}^2 + \bar{C}_n^{(33)} l_{m_c}^3 \Big) \\ &+ \dots \end{split}$$

Analysis in NNLO

• FORM program MATAD Coefficients \overline{C}_n up to n = 8(also for axial, scalar and pseudoscalar correlators) (Chetyrkin, JK, Steinhauser, 1996)

Analysis in N³LO

Algebraic reduction to 13 master integrals (Laporta algorithm); numerical and analytical evaluation of master integrals

○ : heavy quarks, ○ : light quarks,

- n_f : number of active quarks
- ⇒ About 700 Feynman-diagrams

Seduction to master integrals

 \overline{C}_0 and \overline{C}_1 in order α_s^3 (four loops!) Program "Sturman" (Sturm) (2006)

(Chetyrkin, JK, Sturm; Boughezal, Czakon, Schutzmeier) \overline{C}_2 and \overline{C}_3 (2008) Program "Crusher", Marquard & Seidel (Maier, Maierhöfer, Marquard, A. Smirnov) All master integrals known analytically and double checked. (Schröder + Vuorinen, Chetyrkin et al., Schröder + Steinhauser, Laporta, Broadhurst, Kniehl et al.)

 $\bar{C}_4 - \bar{C}_{10}$: extension to higher moments by Padé method, using analytic information from low energy ($q^2 = 0$), threshold ($q^2 = 4m^2$), high energy ($q^2 = -\infty$) (Kiyo, Maier, Maierhöfer, Marquard, 2009)

(Also: q^2 -dependence of scalar, vector,... correlator)

Relation to measurements

$$\mathcal{M}_{n}^{\text{th}} \equiv \frac{12\pi^{2}}{n!} \left(\frac{d}{dq^{2}} \right)^{n} \Pi_{c}(q^{2}) \bigg|_{q^{2}=0} = \frac{9}{4} Q_{c}^{2} \left(\frac{1}{4m_{c}^{2}} \right)^{n} \bar{C}_{n}$$

Perturbation theory: \bar{C}_n is function of α_s and $\ln \frac{m_c^2}{\mu^2}$ dispersion relation:

$$\Pi_c(q^2) = \frac{q^2}{12\pi^2} \int \mathrm{d}s \, \frac{R_c(s)}{s(s-q^2)} + \text{subtraction}$$

$$\Rightarrow \mathcal{M}_n^{\mathsf{exp}} = \int \frac{\mathrm{d}s}{s^{n+1}} R_c(s)$$

constraint: $\mathcal{M}_n^{\text{exp}} = \mathcal{M}_n^{\text{th}}$

 $r > m_c$

II.3a Results from Experiment

Ingredients (charm)

experiment:

• $\Gamma_e(J/\psi, \psi')$ from BES & CLEO & BA-BAR (PDG) • $\psi(3770)$ and R(s) from BES • $\alpha_{\rm S} = 0.1187 \pm 0.0020$

theory:

N³LO for n = 1, 2, 3, 4
include condensates

$$\delta \mathcal{M}_n^{\mathsf{np}} = \frac{12\pi^2 Q_c^2}{(4m_c^2)^{(n+2)}} \left\langle \frac{\alpha_{\mathsf{s}}}{\pi} G^2 \right\rangle a_n \left(1 + \frac{\alpha_{\mathsf{s}}}{\pi} \overline{b}_n \right)$$

- estimate of non-perturbative terms (oscillations, based on Shifman)
- careful extrapolation of R_{uds}
- careful definition of R_c

Results (m_c) (2009)

Error budget

n	m_c (3 GeV)	exp	α_s	μ	np	total
1	986	9	9	2	1	13
2	976	6	14	5	0	16
3	978	5	15	7	2	17
4	1004	3	9	31	7	33

Remarkable consistency between n = 1, 2, 3, 4and stability ($\mathcal{O}(\alpha_s^2)$ vs. $\mathcal{O}(\alpha_s^3)$); prefered scale: $\mu = 3 \text{ GeV}$,

• $m_{\rm C}(3 \,{\rm GeV}) = 986 \pm 13 \,{\rm MeV}$ conversion to $m_c(m_c)$:

• $m_{\rm C}(m_{\rm C}) = 1279 \pm 13 \,{\rm MeV}$

dependence of m_c on number of moment n and on $\mathcal{O}(\alpha_s^i)$ for $i = 0, \ldots, 3$

Experimental Ingredients for m_b

Contributions from

- narrow resonances $(\Upsilon(1S) \Upsilon(4S))$
- threshold region (10.618 GeV 11.2 GeV)
- perturbative continuum ($E \ge 11.2 \text{ GeV}$)
- different relative importance of resonances vs. continuum for n = 1, 2, 3, 4

n	$\mathcal{M}_n^{res,(1S-4S)}$	\mathcal{M}_n^{thresh}	\mathcal{M}^{cont}_n	\mathcal{M}_n^{exp}
	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$
1	1.394(23)	0.287(12)	2.911(18)	4.592(31)
2	1.459(23)	0.240(10)	1.173(11)	2.872(28)
3	1.538(24)	0.200(8)	0.624(7)	2.362(26)
4	1.630(25)	0.168(7)	0.372(5)	2.170(26)

(BABAR 2009)

(Theory)

(PDG)

31

n	$m_b(10{ m GeV})$	exp	α_s	μ	total	$m_b(m_b)$
1	3597	14	7	2	16	4151
2	3610	10	12	3	16	4163
3	3619	8	14	6	18	4172
4	3631	6	15	20	26	4183

Consistency (n = 1, 2, 3, 4) and stability $(\mathcal{O}(\alpha_s^2) \text{ vs. } \mathcal{O}(\alpha_s^3))$;

- $m_{\rm b}(10\,{\rm GeV}) = 3610\pm16\,{\rm MeV}$
- $m_{\rm b}(m_{\rm b}) = 4163 \pm 16 \,{\rm MeV}$

well consistent with KSS 2007

Time evolution:

results from 2001, 2007 and 2009 internally consistent, driving the PDG result

	$m_c(m_c)$	$m_b(m_b)$
PDG 2000	1.15 – 1.35 GeV	4.0-4.4 GeV
sum rules 2001	$1304\pm27~{ m MeV}$	$4191\pm51~{ m MeV}$
sum rules 2007	1286 ± 13 MeV	$4164\pm25~{ m MeV}$
sum rules 2009	1286 ± 13 MeV	4163 ± 16 MeV
PDG 2014	1275 ± 25 MeV	4180 ± 30 MeV

II.3b Results from Lattice

lattice & pQCD (HPQCD + SFB/A1)

lattice evaluation of pseudoscalar correlator \Rightarrow replace experimental moments by lattice simulation input: $M(\eta_c) = m_c$, $M(\Upsilon(1S)) - M(\Upsilon(2S)) = \alpha_s$

pQCD for pseudoscalar correlator available: "all" moments in $\mathcal{O}(\alpha_s^2)$ three lowest moments in $\mathcal{O}(\alpha_s^3)$. the lowest moment is dimensionless

$$\Rightarrow \alpha_{s}(3\text{GeV}) \Rightarrow \alpha_{s}(M_{Z}) = 0.1174(12)$$

higher moments: $\sim m_{\rm C}^2 \times \left(1 + ... \frac{\alpha_{\rm S}}{\pi} ...\right)$,

 $\Rightarrow m_{\rm C}(3{\rm GeV}) = 986(10) {\rm MeV}$ to be compared with 986(13) MeV from e^+e^- !

update: HPQCD 2010

 $\alpha_{\rm S}(3{\rm GeV}) \Rightarrow \alpha_{\rm S}(M_Z) = 0.1183(7)$

 $m_{\rm C}(3{\rm GeV}) = 986(6) {\rm MeV}$

 $m_{\rm b}(10{\rm GeV}) = 3617(25)~{\rm MeV}$

SUMMARY on m_Q

further improvements needed and possible

III. MISCELLANEOUS

1. Matching and running

Decoupling in QCD at four loops (Schröder, Steinhauser; Chetyrkin, JK, Sturm 2005)

first evaluation of four-loop tadpoles

required for running of α_s

complementary to five-loop beta-function (\rightarrow Chetyrkin)

2. Higgs decay

Three-loop QCD contributions to $H \rightarrow \gamma \gamma$ (Maierhöfer & Marquard 2012), full m_H/m_t dependence

Sample diagrams of the 1-loop (a), 2-loop (b), 3-loop non-singlet (c)-(e), and 3-loop singlet (f)-(g) top quark induced contribution to $H \rightarrow \gamma \gamma$.

NNLO non-singlet: Steinhauser 1996 singlet: Maierhöfer & Marquard, 2012

Four (and five) loop QCD contributions to $H \rightarrow \gamma \gamma$ in large m_t limit (Sturm 2014)

non-singlet and singlet pieces in four loop Q_t^2 terms in five loop

Physics of top quarks

- electroweak corrections (Scharf, JK, Uwer)
- QCD asymmetry (Rodrigo, JK)

• threshold cross section (Kiyo, JK, Moch, Steinhauser, Uwer)

45

actively ongoing program