Unstable particles with effective field theory

M. Beneke (TU München)

Advances in Computational Particle Physics, 15-19 September 2014, Durbach, Germany

Outline

- Motivation and theoretical framework
- Line-shape
 MB, Chapovsky, Signer, Zanderighi, hep-ph/03120331, hep-ph/0401002.
- W pair production near threshold
- Invariant mass cuts
 MB, Kauer, Signer, Zanderighi, hep-ph/0411108, MB, Falgari, Schwinn, Signer, Zanderighi, 0707.0773 [hep-ph], Actis, MB, Falgari, Schwinn, 0807.102 [hep-ph].
- Non-resonant effects in t
 -
 -
- Summary and further results

Motivation

 "Fundamental question in QFT" – Perturbation expansions do not work for the production of resonances ("unstable particles") even for weak coupling, because

$$M^2/(s-M^2)\sim M^2/(M\Gamma)\sim 1/g^2$$

Systematic expansion?

• "Precision physics" – with electroweak gauge bosons W, Z, the top quark. Decay rapidly ($\tau < 10^{-25}s$) such that

$$\frac{\text{width}}{\text{mass}} \equiv \frac{\Gamma}{M} \sim \mathcal{O}(\alpha_{\text{EW}}) \ll 1$$

but non-negligible. (Higgs width is very small)

What's the problem?

- Singularity of propagator indicates sensitivity to two very different scales: short-distance production $(1/\sqrt{s}, 1/M)$ and the lifetime $1/\Gamma \gg 1/M$ (unless the contour can be deformed away from the singularity).
- "Dyson resummation" of self-energy insertions

$$\frac{1}{p^2 - M^2} \to \frac{1}{p^2 - M^2 - \Pi(p^2)}$$

regularizes the singularity, since $\Pi(M^2) \approx \delta M^2 - iM\Gamma$, but upsets the perturbative expansion. Gauge-dependence of $\Pi(s)$ and the propagator of a gauge boson resonance. Need a systematic approximation in g^2 and Γ/M to the scattering amplitude/cross section.

 Note: unstable particles have no asymptotic states and their lines are never cut in Cutkosky's rules [Veltman, 1963]. Theory is unitary in the Hilbert space of asymptotic states. "On-shell" production of unstable particles corresponds to the leading-order approximation

$$\frac{M\Gamma}{(p^2 - M^2)^2 + M^2\Gamma^2} \stackrel{\Gamma \to 0}{\to} \pi \delta(p^2 - M^2)$$

Methods/approaches

- "Complex mass scheme" [Denner, Dittmaier, Roth, Wackeroth, 1999 ... Denner, Lang, 2014]
 - Standard perturbative calculation with complex mass counterterms,

$$M_{\text{bare}}^2 = \mu^2 + \delta \mu^2, \qquad \mu^2 = M^2 - iM\Gamma,$$

so $p^2 - \mu^2$ is never zero.

- With M_Z, M_W and G_F as inputs for the renormalized electroweak parameters → sin θ_W and coupling constants become complex (essential for Ward identities to hold).
- Straightforward for standard NLO calculations, including fully differential quantities.
- "Effective theory approach" [this project]
 - Starts from $\Gamma \ll M$ and idea of scale separation. Strict expansion and power counting.
 - Especially useful for threshold, combination with resummation, beyond NLO for sufficiently inclusive quanitites.
 - Field theory realisation and systematic extension of the "(Double) pole approximation" [Stuart, 1991; Aeppli, van Oldenborgh, Wyler, 1994]

Matching kinematic regions

• Consider line-shape $A + B \rightarrow \text{resonance} \rightarrow X$

$$\delta \equiv \frac{s - M^2}{M^2}$$

• Off resonance, $\delta \sim 1$, conventional perturbation theory applies

$$\sigma = g^4 f_1(\delta) + g^6 f_2(\delta) + \dots$$

• Near resonance, $\delta \ll 1$, expand in δ and reorganize

$$\sigma \sim \sum_{n} \left(\frac{g^2}{\delta}\right)^n \times \{1 \text{ (LO)}; g^2, \delta \text{ (NLO)}, \ldots\} = h_1(g^2/\delta) + g^2 h_2(g^2/\delta) + \ldots$$

• The two approximations can be matched in an intermediate region, where δ and g^2/δ are small.

In the following concentrate on the resonance region (threshold for pair production).

Unstable particle EFT (I)

Step 1: Integrate out hard fluctuations $k \sim M$ The EFT contains

- No top, Z, W, Higgs.
- Resonant field φ_v (p = Mv + k, as in HQET) with soft (k ~ Γ) fluctuations.
 Non-relativistic fields for pair production near threshold.
- Soft $k \sim \Gamma$ massless fields (photons, gluons, light fermions)
- Hard-collinear $(k_+ \sim M, k_\perp \sim \sqrt{M\Gamma}, k_- \sim \Gamma)$ massless fields (photons, gluons, light fermions)
- · Effective interactions
- The production of the W bosons is short-distance and must be incorporated into the EFT by local operators (more precisely, local modulo collinear Wilson lines).

Step 2: Integrate out hard-collinear fluctuations, leaving

- · resonant and soft fields as above
- external-collinear fields ψ_{n_-} $(p=Mn_-/2+k)$ and χ_{n_+} $(p=Mn_+/2+k)$

i.e. only soft fluctuations around classical scattering trajectory.

Unstable particle EFT (II)

For $\nu e \to W \to X$ line-shape

General formula for the forward-scattering amplitude including non-resonant production

$$i\,\mathcal{A} = \sum_{k,l} \int d^4x \, \langle \nu e | T(i\mathcal{O}_p^{(k)}(0)i\mathcal{O}_p^{(l)}(x)) | \nu e \rangle + \sum_k \, \langle \nu e | i\mathcal{O}_{\mathrm{nr}}^{(k)}(0) | \nu e \rangle.$$

- Matrix elements are evaluated in the EFT: HPET (NREFT) + SCET
- The local "non-resonant" operator includes off-shell W or "background" processes.

Unstable particle EFT (III)

$$\mathcal{L}_{\text{eff}} = 2\hat{M}\phi_{v}^{\dagger} \left(iv \cdot D_{s} - \frac{\Delta}{2} \right) \phi_{v} + 2\hat{M}\phi_{v}^{\dagger} \left(\frac{(iD_{s} \top)^{2}}{2\hat{M}} + \frac{\Delta^{2}}{8\hat{M}} \right) \phi_{v}$$

$$- \frac{1}{4} F_{s\mu\nu} F_{s}^{\mu\nu} + \bar{\psi}_{s} i \not\!\!{D}_{s} \psi_{s} + \bar{\chi}_{s} i \not\!\!{D}_{x} \chi_{s} + \bar{\psi}_{n_{-}} i n_{-} D_{s} \frac{\not\!\!{H}}{2} \psi_{n_{-}}$$

$$+ C \left[y \phi_{v} \bar{\psi}_{n_{-}} \chi_{n_{+}} + \text{h.c.} \right] + \frac{y y^{*} D}{4\hat{M}^{2}} \left(\bar{\psi}_{n_{-}} \chi_{n_{+}} \right) (\bar{\chi}_{n_{+}} \psi_{n_{-}}) + \dots$$

- At NLO need
 - Δ to order g^4 (two-loop on-shell, hard self-energy) In the pole scheme $\Delta = -i\Gamma$ exactly with Γ the on-shell width
 - $-C=1+\ldots$ to one-loop
 - D at tree-level, D = 1
- The unstable particle propagator is $\frac{i}{2\hat{M}(v \cdot k \Delta^{(1)}/2)}$
- After deriving L_{eff} to the required accuracy by matching calculations, calculate the scattering amplitude in the effective theory – both is done in conventional PT

Sample diagram

Separate hard and soft contributions to the 1-loop selfenergy $\Pi(s) = \Pi_h(s) + \Pi_s(s)$, then expand

$$\Pi_h(s) = \hat{M}^2 \sum_l \delta^l \, \Pi^{(1,l)}$$

- The different terms are distributed as follows:
 - $\Pi^{(1,0)}$ (gauge-invariant) $\rightarrow \Delta^{(1)}$ (LO)
 - $\Pi^{(1,1)}$ (gauge-dependent) → $C^{(1)}$ (NLO)
 - $\Pi^{(1,2)}$ (gauge-dependent) → $D^{(1)}$ (NNLO)
 - Π_s is reproduced by the effective theory self-energy

And so on in higher order in δ and α

 The matching procedure guarantees that the coefficients of the effective Lagrangian are automatically gauge-invariant (because so is the Lagrangian), and that no double-counting occurs.

NLO line shape

$$i \mathcal{T}_{h}^{(1)} = i \mathcal{T}^{(0)} \times \left[2 C^{(1)} - \frac{[\Delta^{(1)}]^{2}}{8 \mathcal{D} \hat{M}} + \frac{\Delta^{(2)}}{2 \mathcal{D}} - \frac{\mathcal{D}}{2 \hat{M}} \right]$$

$$i \mathcal{T}_{s}^{(1)} = i \mathcal{T}^{(0)} \times a_{g} \left[4 \ln^{2} \left(\frac{-2 \mathcal{D}}{\mu} \right) - 4 \ln \left(\frac{-2 \mathcal{D}}{\mu} \right) + \frac{5 \pi^{2}}{6} \right]$$

$$\mathcal{D} \equiv \sqrt{s} - \hat{M} - \frac{\Delta^{(1)}}{2}$$

- ullet Leading-order line-shape $\mathcal{T}^{(0)}$ has exact Breit-Wigner form
- 1/ε poles cancel when adding hard and soft contributions up to initial state collinear divergence (standard)
- Simple (single-scale) calculations
- NLO line-shape $\mathcal{T}^{(0)}$ no longer Breit-Wigner-shaped. Fitting to Breit-Wigner leads to errors in mass determinations of $\mathcal{O}(100\,\text{MeV})$.

NLO line shape

Scales, parameters, power counting – WW and $t\bar{t}$ threshold

• WW pair production near threshold is dominated by electroweak interactions (in leading orders), top pair production by the strong interaction.

•

	$\Phi = Z, W, \dots$	WW	$t\overline{t}$
$lpha_{ew}$	δ	δ	δ
$lpha_{em}$	δ	δ	δ
$lpha_s$	$(\sqrt{\delta})$	$(\sqrt{\delta})$	$\sqrt{\delta}$
Γ/M	δ	δ	δ
$v^2 \equiv (\sqrt{s} - [(2)M + i\Gamma])/M$	δ	δ	δ
g^2/v (Coulomb)	_	$\sqrt{\delta}$	1

• Both require non-relativistic + unstable particle EFT, but for top the former is more essential, while for W unstable particle effects are more important, and the Coulomb interaction does not have to be summed (screened by width). Expansion runs in $\sqrt{\delta}$ for pair production: LO, N^{1/2}LO, NLO, ... (WW)

Inclusive $e^-e^+ \rightarrow 4f$

Consider

$$e^-e^+ \rightarrow \mu^- \bar{\nu}_{\mu} u \bar{d} X$$

near threshold. Dominated by nearly on-shell W^-W^+ . Large sensitivity to M_W . ILC with GIGAZ option: $\delta M_W \approx 6$ MeV experimentally [Wilson, 2001]. Or TLEP. Rule of thumb: $\delta \sigma \approx 1\% \Leftrightarrow \delta M_W \approx 15$ MeV.

Calculate totally inclusive final state, except for flavour quantum numbers.
 Extract cross section from the forward-scattering amplitude

$$\hat{\sigma} = \frac{1}{s} \operatorname{Im} \mathcal{A}(e^{-}e^{+} \to e^{-}e^{+})_{|\mu^{-}\bar{\nu}_{\mu}u\bar{d}}$$

 Perform a "QCD-style" calculation of the short-distance cross section with massless electrons in the MS scheme, then

$$\sigma(s) = \int_0^1 dx_1 dx_2 f_{e/e}(x_1) f_{e/e}(x_2) \,\hat{\sigma}(x_1 x_2 s).$$

 $\overline{\text{MS}}$ electron distribution function depends on m_e , but not on \sqrt{s} , M, Γ .

Radiative corrections

- Two-loop $\Delta^{(2)} = M_W(\Pi^{(2,0)} + \Pi^{(1,1)}\Pi^{(1,0)}) = -i\Gamma_W^{(1)}$, i.e. one-loop EW correction to on-shell *W* decay in the pole mass renormalization scheme.
- One-loop EW correction to the LO production operator

$$\mathcal{O}_{p}^{(1)} \ = \ \frac{\pi \alpha_{e_{W}}}{\hat{M}_{W}^{2}} \left[C_{p,LR}^{(1)} \left(\bar{e}_{L} \gamma^{[i} n^{j]} e_{L} \right) + C_{p,RL}^{(1)} \left(\bar{e}_{R} \gamma^{[i} n^{j]} e_{R} \right) \right] \left(\Omega_{-}^{\dagger i} \Omega_{+}^{\dagger j} \right)$$

- Up to two insertions of the Coulomb potential interaction.
- Soft and collinear photon corrections to the EFT forward-scattering amplitude.

• Resummation of large collinear logarithms $\ln(M_w/m_e)$ from initial-state radiation.

NLO Result

Comparison with of Born, EFT, full four fermion [Denner, Dittmaier, Roth, Wieders, 2005] and DPA NLO calculations, ISR resummed. Same input parameters.

	$\sigma(e^-e^+ \to \mu^-\bar{\nu}_\mu u\bar{d} X)$ (fb)					
\sqrt{s} [GeV]	Born (SM)	EFT	full ee4f	DPA		
161	107.06(4)	117.38(4)	118.12(8)	115.48(7)		
170	381.0(2)	399.9(2)	401.8(2)	402.1(2)		

Sensitivity to M_W and theoretical uncertainty Variation of cross section wrt to standard input

- Large uncertainty from current implementation of ISR ($\delta M_W \approx 30 \,\text{MeV}$)
- Uncertainties from N^{3/2}LO radiative effects are estimated 10 MeV from hard corrections and 4 MeV from Coulomb times hard + soft
- Target accuracy (6 MeV) can be reached by NLL ISR implementation and inclusion of N^{3/2}LO – use existing full NLO 4f calc. plus dominant NNLO terms from EFT approach.

Dominant NNLO (I)

Dominant NNLO = $N^{3/2}$ LO in EFT counting

N^{3/2}LO terms already included in full NLO 4f calculation

- NLO correction to non-resonant four-electron operator (non-resonant Born terms were N^{1/2}LO).
- Interference of 1-loop Coulomb exchange with tree-level higher-dimensional production operators.

 $N^{3/2}LO$ terms from true NNLO diagrams (2-loop virtual and 1-loop virtual \times real) contain at least one Coulomb photon:

- Mixed hard/Coulomb corrections
- Interference of Coulomb exchange with soft and collinear radiative corrections
- Correction to the Coulomb potential itself.

Beyond NLO (II)

In total a small correction: $[\delta M_W]_{\rm BeyondNLO} \approx (3-5) \,{\rm MeV}$

	$\sigma(e^-e^+ \to \mu^- \bar{\nu}_\mu u \bar{d} X)$ (fb)					
\sqrt{s} [GeV]	Born	Born (ISR)	NLO	$\hat{\sigma}^{(37)}$	$\sigma_{\rm ISR}^{(32)}$	
158	61.67(2)	45.64(2)	49.19(2)	-0.001	0.000	
		[-26.0%]	[-20.2%]	[-0.00%]	[+0.00%]	
161	154.19(6)	108.60(4)	117.81(5)	0.147	0.087	
		[-29.6%]	[-23.6%]	[+0.10%]	[+0.06%]	
164	303.0(1)	219.7(1)	234.9(1)	0.811	0.544	
		[-27.5%]	[-22.5%]	[+0.27%]	[+0.18%]	
167	408.8(2)	310.2(1)	328.2(1)	1.287	0.936	
		[-24.1%]	[-19.7%]	[+0.31%]	[+0.23%]	
170	481.7(2)	378.4(2)	398.0(2)	1.577	1.207	
		[-21.4%]	[-17.4%]	[+0.33%]	[+0.25%]	

EFT and cuts

Cuts are not straightforward in the EFT approach: may introduce new scales regions. Example: Invariant mass cuts $|M_{u\bar{d}}^2-M_W^2|, |M_{\mu\bar{\nu}_\mu}^2-M_W^2|<\Lambda^2$

• Loose cut: $\Lambda \sim M_W$

No modification of potential loops (momenta always within the cut by power counting).
Cut affects the matching coefficient of the four-electron operator (non-resonant terms).

• Tight cut: $\Lambda \sim \sqrt{M_W \Gamma_W}$

Four-electron operator (non-resonant terms) does not contribute at all. Cut affects loop calculations in the effective theory.

Red dots: Born cross section ($\sqrt{s} = 161$ GeV, WHIZARD)

Top-pair production near threshold

From Project C3:

$$m_{t,PS}(20 \,\text{GeV}) = 171.5 \,\text{GeV}, \Gamma_t = 1.33 \,\text{GeV}$$

- Width relevant at LO
- 3rd order QCD defined by QCD correlation function with $E = \sqrt{s} 2m_t \rightarrow E + i\Gamma_t$.
- Not the full story. Uncancelled ultraviolet divergences (from NNLO).
- Accuracy of 3rd order QCD makes consideration of $e^+e^- \rightarrow W^+W^-b\bar{b}$ mandatory.

Finite-width divergences and non-resonant effects

• Finite-width divergences (overall log divergence, already at NNLO):

$$[\delta G(E)]_{
m overall} \propto rac{lpha_s}{\epsilon} \cdot E$$

Since $E = \sqrt{s} - 2m_t + i\Gamma$, the divergence survives in the imaginary part:

$$\operatorname{Im} \left[\delta G(E)\right]_{\operatorname{overall}} \propto m_t \times \frac{\alpha_s \alpha_{ew}}{\epsilon}$$

• Electroweak effect. Must consider $e^+e^- \to W^+W^-b\bar{b}$.

$$\sigma_{e^{+}e^{-} \rightarrow W^{+}W^{-}b\bar{b}} = \underbrace{\sigma_{e^{+}e^{-} \rightarrow [\bar{u}]_{\mathrm{res}}}(\mu_{w})}_{\text{pure (PNR)QCD}} + \sigma_{e^{+}e^{-} \rightarrow W^{+}W^{-}b\bar{b}_{\mathrm{nonres}}}(\mu_{w})$$

Non-resonant starts at NLO (overall linear divergence) [MB, Jantzen, Ruiz-Femenia, 2010; Penin, Piclum, 2011]. Finite-width scale dep must cancel. Need consistent dim reg calculation.

Non-resonant corrections at NLO

Equivalent to the dimensionally regulated $e^+e^- \rightarrow bW^+\bar{\imath}$ process with $\Gamma_t = 0$, expanded in the hard region around $s = 4m_r^2$.

$$\begin{split} \int_{\Delta^2}^{m_t^2} dp_t^2 \left(m_t^2 - p_t^2 \right)^{\frac{d-3}{2}} H_i \left(\frac{p_t^2}{m_t^2}, \frac{M_W^2}{m_t^2} \right) \\ p_t^2 &\equiv (p_b + p_{W^+})^2 \end{split}$$

$$H_1\left(\frac{p_t^2}{m_t^2}, \frac{M_W^2}{m_t^2}\right) \stackrel{p_t^2 \to m_t^2}{\to} \operatorname{const} \times \frac{1}{(m_t^2 - p_t^2)^2}$$

Linearly IR divergent. Finite in dim reg.

Can impose invariant mass cuts on top decay products, $\Delta^2=M_W^2$ for inclusive cross section. EFT works differently for loose and wide cuts [Actis, MB, Falgari, Schwinn, 2008]

Non-resonant corrections at NLO

QED and non-resonant corrections relative to the $t\bar{t}$ LO cross section in percent: $\sigma^{(1)}_{\text{QED}}/\sigma^{(0)}_{t\bar{t}}$ (upper solid blue), $\sigma^{(1)}_{\text{non-res}}/\sigma^{(0)}_{t\bar{t}}$ for the total cross section (lower solid red) and $\Delta M_t = 15$ GeV (lower dashed red). The relative size of the sum of the QED and non-resonant corrections is represented by the middle (black) lines, for $\Delta M_{t,\text{max}}$ (solid) and $\Delta M_t = 15$ GeV (dashed). $m_{t,\text{pole}} = 172$ GeV.

Large correction below threshold. Much larger than QCD scale-dependence at 3rd order ($\pm(2-3)\%$)

$$e^+e^- \rightarrow W^+W^-b\bar{b}$$
 near $s=4m_t^2$

NLO + NNLO singular terms [Jantzen, Ruiz-Femenia, 2013; see also Hoang, Reisser, Ruiz-Femenia, 2010] (Singular refers to expansion in Λ/m_t where Λ is an invariant mass cut such that $m_t\Gamma_t \ll \Lambda^2 \ll m_t^2$.)

NNLO non-resonant still -2% at threshold and larger below. Accurate description of region below peak is required for precise determination of m_t .

Summary and further results

I Developed a new approach to treating unstable particles consistently.

- Systematic, power counting, gauge-invariant, minimal, non-diagrammatic.
- Especially useful for inclusive observables, resummations (non-relativistic and logs of Γ/M), beyond NLO.
- Less (so far) for distributions. Presence of further scales in different regions of phase-space makes expansions complicated. General feature of EFT/SCET computations.

II Further results

- Single-top production [Falgari, Mellor, Signer, 1007.0893 [hep-ph]; Falgari, Gianuzzi, Mellor, Signer, 1102.5267 [hep-ph]]
- Finite-width effects on threshold corrections to squark and gluino production [Falgari, Schwinn, Wever, 1211.3408 [hep-ph]]
- General formalism for distributions at hadron colliders at NLO and application to t
 [P. Falgari, A.S. Papanastasiou, A. Signer, 1303.5299 [hep-ph]]

Summary and further results

II Further results (continued)

- Two-loop, O(α_sα) corrections to Drell-Yan production in the resonance region [Dittmaier, Huss, Schwinn, 1403.3216 [hep-ph]]
- Cascade decays of supersymmetric particles. Mass determination from kinematic edges in two-jet mass distribution at $M_{\rm had}^2 = (M_{\tilde g}^2 M_{\tilde q}^2)(1 M_\chi^2/M_{\tilde q}^2)$. [MB, Jenniches, Mück, Ubiali, in progress]

