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Motivation

• “Fundamental question in QFT” – Perturbation expansions do not work for the production of
resonances (“unstable particles”) even for weak coupling, because

M2/(s−M2) ∼ M2/(MΓ) ∼ 1/g2

Systematic expansion?

• “Precision physics” – with electroweak gauge
bosons W, Z, the top quark.
Decay rapidly (τ < 10−25s) such that

width
mass

≡
Γ

M
∼ O(αEW)� 1

but non-negligible.
(Higgs width is very small)
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What’s the problem?

• Singularity of propagator indicates sensitivity to two very different scales: short-distance
production (1/

√
s, 1/M) and the lifetime 1/Γ� 1/M (unless the contour can be deformed

away from the singularity).

• “Dyson resummation” of self-energy insertions

1
p2 −M2

→
1

p2 −M2 −Π(p2)

regularizes the singularity, since Π(M2) ≈ δM2 − iMΓ, but upsets the perturbative expansion.
Gauge-dependence of Π(s) and the propagator of a gauge boson resonance.
Need a systematic approximation in g2 and Γ/M to the scattering amplitude/cross section.

• Note: unstable particles have no asymptotic states and their lines are never cut in Cutkosky’s
rules [Veltman, 1963]. Theory is unitary in the Hilbert space of asymptotic states. “On-shell”
production of unstable particles corresponds to the leading-order approximation

MΓ

(p2 −M2)2 + M2Γ2
Γ→0→ πδ(p2 −M2)
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Methods/approaches

• “Complex mass scheme” [Denner, Dittmaier, Roth, Wackeroth, 1999 ... Denner, Lang, 2014]

• Standard perturbative calculation with complex mass counterterms,

M2
bare = µ2 + δµ2, µ2 = M2 − iMΓ,

so p2 − µ2 is never zero.

• With MZ , MW and GF as inputs for the renormalized electroweak parameters→ sin θW
and coupling constants become complex (essential for Ward identities to hold).

• Straightforward for standard NLO calculations, including fully differential quantities.

• “Effective theory approach” [this project]

• Starts from Γ� M and idea of scale separation. Strict expansion and power counting.

• Especially useful for threshold, combination with resummation, beyond NLO for
sufficiently inclusive quanitites.

• Field theory realisation and systematic extension of the “(Double) pole approximation”
[Stuart, 1991; Aeppli, van Oldenborgh, Wyler, 1994]
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Matching kinematic regions

• Consider line-shape A + B→ resonance→ X

δ ≡
s−M2

M2

• Off resonance, δ ∼ 1, conventional perturbation
theory applies

σ = g4f1(δ) + g6f2(δ) + . . .
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effective theory
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• Near resonance, δ � 1, expand in δ and reorganize

σ ∼
∑

n

(
g2

δ

)n

× {1 (LO); g2, δ (NLO), . . .} = h1(g2/δ) + g2h2(g2/δ) + . . .

• The two approximations can be matched in an intermediate region, where δ and g2/δ are
small.
In the following concentrate on the resonance region (threshold for pair production).
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Unstable particle EFT (I)

Step 1: Integrate out hard fluctuations k ∼ M
The EFT contains

• No top, Z,W, Higgs.

• Resonant field φv (p = Mv + k, as in HQET) with soft (k ∼ Γ) fluctuations.
Non-relativistic fields for pair production near threshold.

• Soft k ∼ Γ massless fields (photons, gluons, light fermions)

• Hard-collinear (k+ ∼ M, k⊥ ∼
√

MΓ, k− ∼ Γ) massless fields (photons, gluons, light
fermions)

• Effective interactions

• The production of the W bosons is short-distance and must be incorporated into the EFT by
local operators (more precisely, local modulo collinear Wilson lines).

Step 2: Integrate out hard-collinear fluctuations, leaving

• resonant and soft fields as above

• external-collinear fields ψn− (p = Mn−/2 + k) and χn+ (p = Mn+/2 + k)

i.e. only soft fluctuations around classical scattering trajectory.
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Unstable particle EFT (II)

For νe→ W → X line-shape

General formula for the forward-scattering amplitude including non-resonant production

iA =
∑
k,l

∫
d4x 〈νe|T(iO(k)

p (0)iO(l)
p (x))|νe〉+

∑
k

〈νe|iO(k)
nr (0)|νe〉.

• Matrix elements are evaluated in the EFT: HPET (NREFT) + SCET

• The local “non-resonant” operator includes off-shell W or “background” processes.
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Unstable particle EFT (III)

Leff = 2M̂φ†v

(
iv · Ds −

∆

2

)
φv + 2M̂φ†v

(
(iDs>)2

2M̂
+

∆2

8M̂

)
φv

−
1
4

FsµνFµνs + ψ̄si 6Dsψs + χ̄si 6∂χs + ψ̄n− in−Ds
n/+

2
ψn−

+ C [yφvψ̄n−χn+ + h.c.] +
yy∗D

4M̂2
(ψ̄n−χn+ )(χ̄n+ψn− ) + . . .

• At NLO need
– ∆ to order g4 (two-loop on-shell, hard self-energy)

In the pole scheme ∆ = −iΓ exactly with Γ the on-shell width
– C = 1 + . . . to one-loop
– D at tree-level, D = 1

• The unstable particle propagator is
i

2M̂(v·k −∆(1)/2)

• After deriving Leff to the required accuracy by matching calculations, calculate the scattering
amplitude in the effective theory – both is done in conventional PT

M. Beneke (TU München) B4 – Unstable Particles SFB TR9, September 18, 2014 8 / 25



Sample diagram

Separate hard and soft contributions to the 1-loop self-
energy Π(s) = Πh(s) + Πs(s), then expand

Πh(s) = M̂2
∑

l

δl Π(1,l)

• The different terms are distributed as follows:
– Π(1,0) (gauge-invariant)→∆(1) (LO)
– Π(1,1) (gauge-dependent)→ C(1) (NLO)
– Π(1,2) (gauge-dependent)→ D(1) (NNLO)
– Πs is reproduced by the effective theory self-energy

And so on in higher order in δ and α

• The matching procedure guarantees that the coefficients of the effective Lagrangian are
automatically gauge-invariant (because so is the Lagrangian), and that no double-counting
occurs.
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NLO line shape

iT (1)
h = iT (0) ×

[
2 C(1) −

[∆(1)]2

8DM̂
+

∆(2)

2D
−
D
2M̂

]

iT (1)
s = iT (0) × ag

[
4 ln2

(−2D
µ

)
− 4 ln

(−2D
µ

)
+

5π2

6

]

D ≡
√

s− M̂ −
∆(1)

2

• Leading-order line-shape T (0) has exact Breit-Wigner form

• 1/ε poles cancel when adding hard and soft contributions up to initial state collinear
divergence (standard)

• Simple (single-scale) calculations

• NLO line-shape T (0) no longer Breit-Wigner-shaped. Fitting to Breit-Wigner leads to errors
in mass determinations ofO(100 MeV).
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NLO line shape
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Scales, parameters, power counting – WW and t̄t threshold

• WW pair production near threshold is dominated by electroweak interactions (in leading
orders), top pair production by the strong interaction.

•

Φ = Z,W, . . . WW t̄t

αew δ δ δ
αem δ δ δ

αs (
√
δ) (

√
δ)

√
δ

Γ/M δ δ δ

v2 ≡ (
√

s− [(2)M + iΓ])/M δ δ δ

g2/v (Coulomb) −
√
δ 1

• Both require non-relativistic + unstable particle EFT, but for top the former is more
essential, while for W unstable particle effects are more important, and the Coulomb
interaction does not have to be summed (screened by width).
Expansion runs in

√
δ for pair production: LO, N1/2LO, NLO, ... (WW)
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Inclusive e−e+ → 4 f

• Consider
e−e+ → µ−ν̄µud̄ X

near threshold. Dominated by nearly on-shell W−W+. Large sensitivity to MW .
ILC with GIGAZ option: δMW ≈ 6 MeV experimentally [Wilson, 2001]. Or TLEP.
Rule of thumb: δσ ≈ 1%⇔ δMW ≈ 15 MeV.

• Calculate totally inclusive final state, except for flavour quantum numbers.
Extract cross section from the forward-scattering amplitude

σ̂ =
1
s

ImA(e−e+ → e−e+)|µ−ν̄µud̄

• Perform a “QCD-style” calculation of the short-distance cross section with massless
electrons in the MS scheme, then

σ(s) =

∫ 1

0
dx1dx2 fe/e(x1) fe/e(x2) σ̂(x1x2s).

MS electron distribution function depends on me, but not on
√

s, M, Γ.
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Radiative corrections

• Two-loop ∆(2) = MW(Π(2,0) + Π(1,1)Π(1,0)) = −iΓ(1)
W , i.e. one-loop EW correction

to on-shell W decay in the pole mass renormalization scheme.

• One-loop EW correction to the LO production operator

O(1)
p =

παew

M̂2
W

[
C(1)

p,LR

(
ēLγ

[inj]eL

)
+ C(1)

p,RL

(
ēRγ

[inj]eR

)](
Ω†i−Ω†j+

)

• Up to two insertions of the Coulomb potential interaction.

• Soft and collinear photon corrections to the EFT forward-scattering amplitude.

• Resummation of large collinear logarithms ln(Mw/me) from initial-state radiation.

e

e

W

W

νi

νj

ek W

e

e

W

W

νi

γ

e W

e

e

W

W

νi

W

W

γ

e

e

W

W

e

Z

γ

W

∆A(1),fin
LR,soft = A(0)

LR
2α

π

[
L2 − 4L + 8 +

13

24
π

2
]

L = ln
[
−

8(E + iΓ(0)
W )

µ

]
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NLO Result

Comparison with of Born, EFT, full four fermion [Denner, Dittmaier, Roth, Wieders, 2005] and DPA NLO cal-
culations, ISR resummed. Same input parameters.

σ(e−e+ → µ−ν̄µud̄ X)(fb)√
s [GeV] Born (SM) EFT full ee4f DPA
161 107.06(4) 117.38(4) 118.12(8) 115.48(7)
170 381.0(2) 399.9(2) 401.8(2) 402.1(2)

160 162 164 166 168 170
�!!!!

s @GeVD

0.98

0.99

1.01

1.02

Κ

-45 MeV

-30 MeV

-15 MeV

+15 MeV

+30 MeV

+45 MeV

ISR

160 162 164 166 168 170
�!!!!

s @GeVD

0.98

0.99

1.01

1.02

ΚSensitivity to MW and theoretical uncertainty
Variation of cross section wrt to standard input

• Large uncertainty from current
implementation of ISR (δMW ≈ 30 MeV)

• Uncertainties from N3/2LO radiative effects
are estimated 10 MeV from hard corrections
and 4 MeV from Coulomb times hard + soft

• Target accuracy (6 MeV) can be reached by
NLL ISR implementation and inclusion of
N3/2LO – use existing full NLO 4 f calc. plus
dominant NNLO terms from EFT approach.
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Dominant NNLO (I)

Dominant NNLO = N3/2LO in EFT counting

N3/2LO terms already included in full NLO 4f calculation

• NLO correction to non-resonant four-electron operator (non-resonant Born terms were
N1/2LO).

• Interference of 1-loop Coulomb exchange with tree-level higher-dimensional production
operators.

N3/2LO terms from true NNLO diagrams (2-loop virtual and 1-loop virtual × real) contain at least
one Coulomb photon:

• Mixed hard/Coulomb corrections

• Interference of Coulomb exchange with
soft and collinear radiative corrections

• Correction to the Coulomb potential
itself.
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Beyond NLO (II)

160 162 164 166 168 170
�!!!!

s @GeVD

-0.2

-0.1

0.1

0.2

0.3

∆Σ�ΣBorn @%D

C2
C´res
C´decay
NLO-C
C´HS+HL
N 3�2 LO

In total a small correction:
[δMW ]BeyondNLO ≈ (3− 5) MeV

σ(e−e+ → µ−ν̄µud̄ X)(fb)
√

s [GeV] Born Born (ISR) NLO σ̂(32/) σ
(32/)
ISR

158 61.67(2) 45.64(2) 49.19(2) −0.001 0.000
[−26.0%] [−20.2%] [−0.00%] [+0.00%]

161 154.19(6) 108.60(4) 117.81(5) 0.147 0.087
[−29.6%] [−23.6%] [+0.10%] [+0.06%]

164 303.0(1) 219.7(1) 234.9(1) 0.811 0.544
[−27.5%] [−22.5%] [+0.27%] [+0.18%]

167 408.8(2) 310.2(1) 328.2(1) 1.287 0.936
[−24.1%] [−19.7%] [+0.31%] [+0.23%]

170 481.7(2) 378.4(2) 398.0(2) 1.577 1.207
[−21.4%] [−17.4%] [+0.33%] [+0.25%]
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EFT and cuts

Cuts are not straightforward in the EFT approach: may introduce new scales regions.
Example: Invariant mass cuts |M2

ud̄ −M2
W |, |M2

µν̄µ −M2
W | < Λ2

• Loose cut: Λ ∼ MW

No modification of potential loops
(momenta always within the cut by
power counting).
Cut affects the matching coefficient of
the four-electron operator
(non-resonant terms).

• Tight cut: Λ ∼
√

MWΓW

Four-electron operator (non-resonant
terms) does not contribute at all.
Cut affects loop calculations in the
effective theory.

1 1.5 2 3 5 7 10
MW �L
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Red dots: Born cross section (
√

s = 161 GeV, WHIZARD)
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Top-pair production near threshold

mt,PS(20 GeV) = 171.5 GeV, Γt = 1.33 GeV

NNNLO

Μ=H50-350LGeV
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From Project C3:

[MB, Kiyo, Schuller; MB ... Steinhauser, in progress]

Not the final result! • Width relevant at LO

• 3rd order QCD defined by QCD correlation
function with E =

√
s− 2mt → E + iΓt .

• Not the full story. Uncancelled ultraviolet
divergences (from NNLO).

• Accuracy of 3rd order QCD makes
consideration of e+e− → W+W−bb̄
mandatory.

M. Beneke (TU München) B4 – Unstable Particles SFB TR9, September 18, 2014 19 / 25



Finite-width divergences and non-resonant effects

• Finite-width divergences (overall log divergence, already at NNLO):

[δG(E)]overall ∝
αs

ε
· E

Since E =
√

s− 2mt + iΓ, the divergence survives in the imaginary part:

Im [δG(E)]overall ∝ mt ×
αsαew

ε

• Electroweak effect. Must consider e+e− → W+W−bb̄.

σe+e−→W+W−bb̄ = σe+e−→[t̄t]res
(µw)︸ ︷︷ ︸

pure (PNR)QCD

+σe+e−→W+W−bb̄nonres
(µw)

Non-resonant starts at NLO (overall linear divergence) [MB, Jantzen, Ruiz-Femenia, 2010; Penin,

Piclum, 2011]. Finite-width scale dep must cancel. Need consistent dim reg calculation.
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Non-resonant corrections at NLO
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Equivalent to the dimensionally regulated
e+e− → bW+ t̄ process with Γt = 0, ex-
panded in the hard region around s = 4m2

t .

∫ m2
t

∆2
dp2

t (m2
t − p2

t )
d−3

2 Hi

( p2
t

m2
t
,

M2
W

m2
t

)
p2

t ≡ (pb + pW+ )2

H1

( p2
t

m2
t
,

M2
W

m2
t

) p2
t→m2

t→ const×
1

(m2
t − p2

t )2

Linearly IR divergent. Finite in dim reg.

Can impose invariant mass cuts on top decay
products. ∆2 = M2

W for inclusive cross section.
EFT works differently for loose and wide cuts
[Actis, MB, Falgari, Schwinn, 2008]
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Non-resonant corrections at NLO

[MB, Jantzen, Ruiz-Femenia, 2010]
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(0)
t̄t for the total cross section (lower solid

red) and ∆Mt = 15 GeV (lower dashed red). The relative size of the sum of the QED

and non-resonant corrections is represented by the middle (black) lines, for ∆Mt,max

(solid) and ∆Mt = 15 GeV (dashed). mt,pole = 172 GeV.

Large correction below threshold.
Much larger than QCD scale-dependence at 3rd order (±(2− 3)%)
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e+e− → W+W−bb̄ near s = 4m2
t

NLO + NNLO singular terms [Jantzen, Ruiz-Femenia, 2013; see also Hoang, Reisser, Ruiz-Femenia, 2010]

(Singular refers to expansion in Λ/mt where Λ is an invariant mass cut such that mtΓt � Λ
2 � m2

t .)

NNLO non-resonant still −2% at threshold and larger below.
Accurate description of region below peak is required for precise determination of mt .
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Summary and further results

I Developed a new approach to treating unstable particles consistently.

• Systematic, power counting, gauge-invariant, minimal,
non-diagrammatic.

• Especially useful for inclusive observables, resummations
(non-relativistic and logs of Γ/M), beyond NLO.

• Less (so far) for distributions. Presence of further scales in different
regions of phase-space makes expansions complicated. General feature
of EFT/SCET computations.

II Further results

• Single-top production [Falgari, Mellor, Signer, 1007.0893 [hep-ph]; Falgari, Gianuzzi,

Mellor, Signer, 1102.5267 [hep-ph]]

• Finite-width effects on threshold corrections to squark and gluino
production [Falgari, Schwinn, Wever, 1211.3408 [hep-ph]]

• General formalism for distributions at hadron colliders at NLO and
application to t̄t [P. Falgari, A.S. Papanastasiou, A. Signer, 1303.5299 [hep-ph]]
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Summary and further results

II Further results (continued)

• Two-loop,O(αsα) corrections to Drell-Yan production in the
resonance region [Dittmaier, Huss, Schwinn, 1403.3216 [hep-ph]]

• Cascade decays of supersymmetric particles.
Mass determination from kinematic edges in two-jet mass distribution
at M2

had = (M2
g̃ −M2

q̃)(1−M2
χ/M2

q̃). [MB, Jenniches, Mück, Ubiali, in progress]
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