

Project C5: Higgs production and renormalization group functions to high loop orders

Principle investigators: Matthias Steinhauser and Luminita Mihaila

Matthias Steinhauser | TTP Karlsruhe

Project C5

- since Oktober 2004: part of the CRC/TR 9
- since January 2011: Luminita Mihaila joins as project leader
- Contributions from
 - Postdocs: Eiras, Grozin, Kiyo, Pak, Reißer, Rogal, Seidel
 - PhD studtents: Bekavac, Grigo, Hermann, Höschele, Hoff, Kant, Kunz, Kurz, Martens, Piclum, Salomon, Zerf
- Multi-loop calculation with heavy fermions in the SM and MSSM
 - lacksquare eta functions in SM and MSSM
 - decoupling in SM, from MSSM to SM, from SU(5) GUT to MSSM
 - GUT scenarios
 - matching coefficients (heavy-light cur., chromomagn. moment, ...)
 - Higgs boson mass in MSSM to 3 loops
 - Higgs boson production in SM and MSSM
 - $ar{B} o X_s \gamma$ and $B_s o \mu^+ \mu^-$ to NNLO

Outline

- Renormalization group functions and decoupling
 - SM beta functions
 - decoupling in QCD
 - matching MSSM → SM
- Higgs boson production
 - SM: NNLO
 - SM: some N³LO steps
 - MSSM: NNLO

SM beta functions

QCD

$$\mu^{2} \frac{\mathrm{d}}{\mathrm{d}\mu^{2}} \frac{\alpha_{s}(\mu)}{\pi} = \beta(\alpha_{s})$$

$$= -\left(\frac{\alpha_{s}}{\pi}\right)^{2} \left[\beta_{0} + \frac{\alpha_{s}}{\pi}\beta_{1} + \left(\frac{\alpha_{s}}{\pi}\right)^{2}\beta_{2} + \left(\frac{\alpha_{s}}{\pi}\right)^{3}\beta_{3} + \ldots\right]$$

$$\beta_0 = \frac{11}{3}C_A - \frac{2}{3}Tn_f$$

[Gross,Wilczek'73; Politzer'73]

QCD

$$\mu^{2} \frac{\mathrm{d}}{\mathrm{d}\mu^{2}} \frac{\alpha_{s}(\mu)}{\pi} = \beta(\alpha_{s})$$

$$= -\left(\frac{\alpha_{s}}{\pi}\right)^{2} \left[\beta_{0} + \frac{\alpha_{s}}{\pi}\beta_{1} + \left(\frac{\alpha_{s}}{\pi}\right)^{2}\beta_{2} + \left(\frac{\alpha_{s}}{\pi}\right)^{3}\beta_{3} + \ldots\right]$$

$$\beta_0 = \frac{11}{3}C_A - \frac{2}{3}Tn_f$$

[Gross,Wilczek'73; Politzer'73]

- eta_1 [Jones'74; Caswell'74; Egorian, Tarasov'78]
- eta_{2} [Tarasov, Vladimirov, Zharkov'80; Larin, Vermaseren'93]
- eta_3 [van Ritbergen, Vermaseren, Larin'97; Czakon'04]

SM: couplings

Gauge:

$$\begin{array}{rcl} \alpha_{1} & = & \frac{5}{3} \frac{\alpha}{\cos^{2} \theta_{W}} \\ \\ \alpha_{2} & = & \frac{\alpha}{\sin^{2} \theta_{W}} \\ \\ \alpha_{3} & = & \alpha_{s} \end{array}$$

[SU(5)-like normalization]

Yukawa:

$$\alpha_{t,b,\tau} = \frac{\alpha m_{t,b,\tau}^2}{2\sin^2\theta_W M_W^2}$$

Higgs:

$$\alpha_7 = \frac{\lambda}{4\pi}$$
 [$\mathcal{L} = -\lambda(\Phi^{\dagger}\Phi)^2 + \ldots$]

SM: β functions

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \frac{\alpha_i}{\pi} = \beta_i(\alpha_1, \alpha_2, \alpha_3, \alpha_t, \alpha_b, \alpha_\tau, \lambda)$$

- lacksquare eta_i from renormalization constants Z_{α_i}
- Example: calculation of $\beta_1, \beta_2, \beta_3$ requires:
 - lacksquare $Z_{\alpha_1}, Z_{\alpha_2}, Z_{\alpha_3}$ to 3 loops
 - β_t , β_b , β_τ to 1 loop $\alpha_{t,b,\tau}$ dependence of Z_{α_1} , Z_{α_2} , Z_{α_3} starts at 2 loops
 - β_{λ} to tree level λ dependence of $Z_{\alpha_1}, Z_{\alpha_2}, Z_{\alpha_3}$ starts at 3 loops

SM: 1- and 2-loop results

Gauge:

1 loop: [Gross, Wilczek'73; Politzer'73]

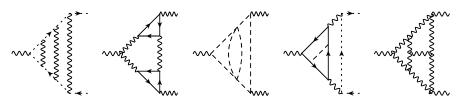
2 IOOPS: [Jones'81; Fischler, Hill'82; Machacek, Vaughn'83; Jack, Osborn'84]

Yukawa:

2 loops: [Fischler,Oliensis'82; Machacek,Vaughn'83; Jack,Osborn'84]

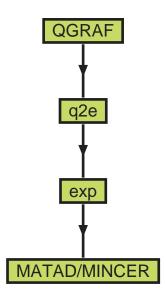
Higgs:

2 IOOPS: [Machacek, Vaughn'84; Jack, Osborn'84; Ford, Jack, Jones'92; Luo, Xiao'02]


Calculation (gauge couplings)

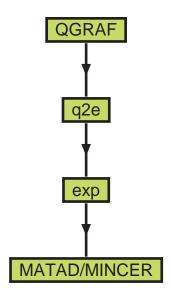
- MS scheme
- unbroken phase of SM

$$lacksymbol{Z}_{lpha_i} = rac{Z_V}{\Pi_k \sqrt{Z_{k,WF}}} = rac{Z_{1,lpha_i car{c}}}{Z_{2c} \sqrt{Z_{3,lpha_i}}} = rac{Z_{1,lpha_i lpha_i}}{\left(\sqrt{Z_{3,lpha_i}}
ight)^3}$$


■ ≈ 1 000 000 Feynman diagrams

- 1 non-zero external momentum 🖒 MINCER [Larin, Tkachov, Vermaseren'91]
- γ_5

Automation



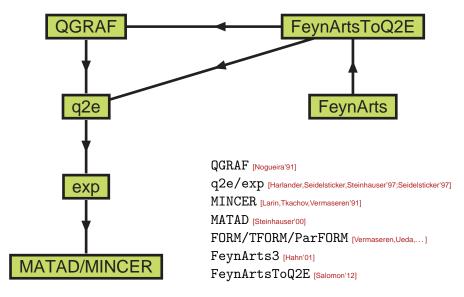

```
\label{eq:QGRAF} $$QGRAF $$ [Nogueira'91]$ $$q2e/exp $$ [Harlander,Seidelsticker,Steinhauser'97;Seidelsticker'97]$ $$MINCER $$ [Larin,Tkachov,Vermaseren'91]$ $$MATAD $$ [Steinhauser'00]$ $$FORM/TFORM/ParFORM $$ [Vermaseren,Ueda,...]$
```

Automation

FeynArts

QGRAF [Nogueira'91]
q2e/exp [Harlander,Seidelsticker,Steinhauser'97;Seidelsticker'97]

MINCER [Larin,Tkachov,Vermaseren'91]


MATAD [Steinhauser'00]

FORM/TFORM/ParFORM [Vermaseren, Ueda,...]

FeynArts3 [Hahn'01]

Automation

Checks

- lacktriangle 2-loop results for eta_{Yukawa} [Fischler,Oliensis'82; Machacek, Vaughn'83; Jack,Osborn'84]
- 3-loop QCD β function [Tarasov,Vladimirov,Zharkov'80; Larin,Vermaseren'93]
- lacksquare 3-loop $\mathcal{O}(lpha_3^3lpha_t)$ to eta_3 [Steinhauser'98]
- 3-loop results for SU(3), SU(2), U(1) (only one gauge coupling)

[Pickering, Gracey, Jones'01]

- calculation for arbitrary ξ_{QCD} , ξ_W , ξ_B $\Rightarrow \beta$ functions are ξ independent
- IR safe: introduce mass $m \neq 0$; asymptotic expansion for $q^2 \gg m^2$ $\stackrel{\square}{\Leftrightarrow} NO \ln(m^2/\mu^2)$ terms!

 (Note: up to 35 sub-diagrams/diagram!)

$$\begin{split} \beta_2 &= \left(\frac{\alpha_2}{\pi}\right)^2 \left\{ -\frac{43}{24} + \frac{n_6}{3} + \frac{\alpha_1}{\pi} \left(\frac{3}{160} + \frac{n_6}{80}\right) + \frac{\alpha_2}{\pi} \left(-\frac{259}{96} + \frac{49n_6}{48}\right) + \frac{\alpha_3}{\pi} \frac{n_6}{4} + \left(\frac{\alpha_1}{\pi}\right)^2 \left(\frac{163}{102400} - \frac{7n_6}{960} - \frac{11n_6^2}{2880}\right) \right. \\ &+ \frac{\alpha_1}{\pi} \frac{\alpha_2}{\pi} \left(\frac{561}{10240} + \frac{13n_6}{1280}\right) - \frac{\alpha_1}{\pi} \frac{\alpha_3}{\pi} \frac{n_6}{960} + \left(\frac{\alpha_2}{\pi}\right)^2 \left(-\frac{667111}{110592} + \frac{1603n_6}{432} - \frac{415n_6^2}{1728}\right) + \frac{\alpha_2}{\pi} \frac{\alpha_3}{\pi} \frac{13n_6}{64} \\ &+ \left(\frac{\alpha_3}{\pi}\right)^2 \left(\frac{125n_6}{192} - \frac{11n_6^2}{144}\right) + n_t \frac{\alpha_t}{\pi} \left[-\frac{3}{32} - \frac{\alpha_1}{\pi} \frac{593}{10240} - \frac{\alpha_2}{\pi} \frac{729}{2048} - \frac{\alpha_3}{\pi} \frac{7}{64} + \frac{\alpha_t}{\pi} \left(\frac{57}{1024} + \frac{45n_t}{512}\right)\right] \\ &+ \frac{\lambda}{4\pi^2} \left(\frac{\alpha_1}{\pi} \frac{3}{640} + \frac{\alpha_2}{\pi} \frac{3}{128} - \frac{\lambda}{4\pi^2} \frac{3}{64}\right) \right\} \end{split}$$

$$\begin{split} \beta_2 &= \left(\frac{\alpha_2}{\pi}\right)^2 \left\{ -\frac{43}{24} + \frac{n_6}{3} + \frac{\alpha_1}{\pi} \left(\frac{3}{160} + \frac{n_6}{80}\right) + \frac{\alpha_2}{\pi} \left(-\frac{259}{96} + \frac{49n_6}{48}\right) + \frac{\alpha_3}{\pi} \frac{n_6}{4} + \left(\frac{\alpha_1}{\pi}\right)^2 \left(\frac{163}{102400} - \frac{7n_6}{960} - \frac{11n_6^2}{2880}\right) \right. \\ &+ \frac{\alpha_1}{\pi} \frac{\alpha_2}{\pi} \left(\frac{561}{10240} + \frac{13n_6}{1280}\right) - \frac{\alpha_1}{\pi} \frac{\alpha_3}{\pi} \frac{n_6}{960} + \left(\frac{\alpha_2}{\pi}\right)^2 \left(-\frac{667111}{110592} + \frac{1603n_6}{432} - \frac{415n_6^2}{1728}\right) + \frac{\alpha_2}{\pi} \frac{\alpha_3}{\pi} \frac{13n_6}{64} \\ &+ \left(\frac{\alpha_3}{\pi}\right)^2 \left(\frac{125n_6}{192} - \frac{11n_6^2}{144}\right) + n_t \frac{\alpha_t}{\pi} \left[-\frac{3}{32} - \frac{\alpha_1}{\pi} \frac{593}{10240} - \frac{\alpha_2}{\pi} \frac{729}{2048} - \frac{\alpha_3}{\pi} \frac{7}{64} + \frac{\alpha_t}{\pi} \left(\frac{57}{1024} + \frac{45n_t}{512}\right)\right] \\ &+ \frac{\lambda}{4\pi^2} \left(\frac{\alpha_1}{\pi} \frac{3}{640} + \frac{\alpha_2}{\pi} \frac{3}{128} - \frac{\lambda}{4\pi^2} \frac{3}{64}\right) \right\} \end{split}$$

 n_G : # of generations

$$\begin{split} \beta_2 &= \left(\frac{\alpha_2}{\pi}\right)^2 \left\{ -\frac{43}{24} + \frac{n_G}{3} + \frac{\alpha_1}{\pi} \left(\frac{3}{160} + \frac{n_G}{80}\right) + \frac{\alpha_2}{\pi} \left(-\frac{259}{96} + \frac{49n_G}{48}\right) + \frac{\alpha_3}{\pi} \frac{n_G}{4} + \left(\frac{\alpha_1}{\pi}\right)^2 \left(\frac{163}{102400} - \frac{7n_G}{960} - \frac{11n_G^2}{2880}\right) \right. \\ &+ \frac{\alpha_1}{\pi} \frac{\alpha_2}{\pi} \left(\frac{561}{10240} + \frac{13n_G}{1280}\right) - \frac{\alpha_1}{\pi} \frac{\alpha_3}{\pi} \frac{n_G}{960} + \left(\frac{\alpha_2}{\pi}\right)^2 \left(-\frac{667111}{110592} + \frac{1603n_G}{432} - \frac{415n_G^2}{1728}\right) + \frac{\alpha_2}{\pi} \frac{\alpha_3}{\pi} \frac{13n_G}{64} \\ &+ \left(\frac{\alpha_3}{\pi}\right)^2 \left(\frac{125n_G}{192} - \frac{11n_G^2}{144}\right) + n_t \frac{\alpha_t}{\pi} \left[-\frac{3}{32} - \frac{\alpha_1}{\pi} \frac{593}{10240} - \frac{\alpha_2}{\pi} \frac{729}{2048} - \frac{\alpha_3}{\pi} \frac{7}{64} + \frac{\alpha_t}{\pi} \left(\frac{57}{1024} + \frac{45n_t}{512}\right)\right] \\ &+ \frac{\lambda}{4\pi^2} \left(\frac{\alpha_1}{\pi} \frac{3}{640} + \frac{\alpha_2}{\pi} \frac{3}{128} - \frac{\lambda}{4\pi^2} \frac{3}{64}\right) \right\} \end{split}$$

 $[\alpha_h \text{ and } \alpha_{\tau} \text{ set to zero}]$

 n_G : # of generations n_t : "# of top quarks"

 $[\alpha_h \text{ and } \alpha_T \text{ set to zero}]$

$$\begin{split} \beta_2 &= \left(\frac{\alpha_2}{\pi}\right)^2 \left\{ -\frac{43}{24} + \frac{n_G}{3} + \frac{\alpha_1}{\pi} \left(\frac{3}{160} + \frac{n_G}{80}\right) + \frac{\alpha_2}{\pi} \left(-\frac{259}{96} + \frac{49n_G}{48}\right) + \frac{\alpha_3}{\pi} \frac{n_G}{4} + \left(\frac{\alpha_1}{\pi}\right)^2 \left(\frac{163}{102400} - \frac{7n_G}{960} - \frac{11n_G^2}{2880}\right) \right. \\ &\quad + \frac{\alpha_1}{\pi} \frac{\alpha_2}{\pi} \left(\frac{561}{10240} + \frac{13n_G}{1280}\right) - \frac{\alpha_1}{\pi} \frac{\alpha_3}{\pi} \frac{n_G}{960} + \left(\frac{\alpha_2}{\pi}\right)^2 \left(-\frac{667111}{110592} + \frac{1603n_G}{432} - \frac{415n_G^2}{1728}\right) + \frac{\alpha_2}{\pi} \frac{\alpha_3}{\pi} \frac{13n_G}{64} \\ &\quad + \left(\frac{\alpha_3}{\pi}\right)^2 \left(\frac{125n_G}{192} - \frac{11n_G^2}{144}\right) + n_t \frac{\alpha_t}{\pi} \left[-\frac{3}{32} - \frac{\alpha_1}{\pi} \frac{593}{10240} - \frac{\alpha_2}{\pi} \frac{729}{2048} - \frac{\alpha_3}{\pi} \frac{7}{64} + \frac{\alpha_t}{\pi} \left(\frac{57}{1024} + \frac{45n_t}{512}\right)\right] \\ &\quad + \frac{\lambda}{4\pi^2} \left(\frac{\alpha_1}{\pi} \frac{3}{640} + \frac{\alpha_2}{\pi} \frac{3}{128} - \frac{\lambda}{4\pi^2} \frac{3}{64}\right) \right\} \end{split}$$

n_G: # of generations

 n_t : "# of top quarks"

1 loop:
$$-\frac{43}{24} + \frac{n_G}{3}$$

$$\begin{split} \beta_2 &= \left(\frac{\alpha_2}{\pi}\right)^2 \left\{ -\frac{43}{24} + \frac{n_G}{3} + \frac{\alpha_1}{\pi} \left(\frac{3}{160} + \frac{n_G}{80}\right) + \frac{\alpha_2}{\pi} \left(-\frac{259}{96} + \frac{49n_G}{48}\right) + \frac{\alpha_3}{\pi} \frac{n_G}{4} + \left(\frac{\alpha_1}{\pi}\right)^2 \left(\frac{163}{102400} - \frac{7n_G}{960} - \frac{11n_G^2}{2880}\right) \right. \\ &+ \frac{\alpha_1}{\pi} \frac{\alpha_2}{\pi} \left(\frac{561}{10240} + \frac{13n_G}{1280}\right) - \frac{\alpha_1}{\pi} \frac{\alpha_3}{\pi} \frac{n_G}{960} + \left(\frac{\alpha_2}{\pi}\right)^2 \left(-\frac{667111}{110592} + \frac{1603n_G}{432} - \frac{415n_G^2}{1728}\right) + \frac{\alpha_2}{\pi} \frac{\alpha_3}{\pi} \frac{31n_G}{64} \\ &+ \left(\frac{\alpha_3}{\pi}\right)^2 \left(\frac{125n_G}{192} - \frac{11n_G^2}{144}\right) + n_t \frac{\alpha_t}{\pi} \left[-\frac{3}{32} - \frac{\alpha_1}{\pi} \frac{593}{10240} - \frac{\alpha_2}{\pi} \frac{729}{2048} - \frac{\alpha_3}{\pi} \frac{7}{64} + \frac{\alpha_t}{\pi} \left(\frac{57}{1024} + \frac{45n_t}{512}\right)\right] \\ &+ \frac{\lambda}{4\pi^2} \left(\frac{\alpha_1}{\pi} \frac{3}{640} + \frac{\alpha_2}{\pi} \frac{3}{128} - \frac{\lambda}{4\pi^2} \frac{3}{64}\right) \right\} \\ &\left[\alpha_h \operatorname{and} \alpha_\tau \operatorname{set to zero}\right] \end{split}$$

 $n_{\rm G}$: # of generations

 n_t : "# of top quarks"

1 loop:
$$-\frac{43}{24} + \frac{n_G}{3}$$

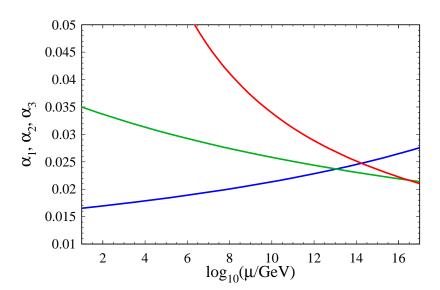
2 loops: $\propto \alpha_1, \alpha_2, \alpha_3, \alpha_t, \alpha_b, \alpha_\tau$

$$\begin{split} \beta_2 &= \left(\frac{\alpha_2}{\pi}\right)^2 \left\{ -\frac{43}{24} + \frac{n_G}{3} + \frac{\alpha_1}{\pi} \left(\frac{3}{160} + \frac{n_G}{80}\right) + \frac{\alpha_2}{\pi} \left(-\frac{259}{96} + \frac{49n_G}{48}\right) + \frac{\alpha_3}{\pi} \frac{n_G}{4} + \left(\frac{\alpha_1}{\pi}\right)^2 \left(\frac{163}{102400} - \frac{7n_G}{960} - \frac{11n_G^2}{2880}\right) \right. \\ &+ \frac{\alpha_1}{\pi} \frac{\alpha_2}{\pi} \left(\frac{561}{10240} + \frac{13n_G}{1280}\right) - \frac{\alpha_1}{\pi} \frac{\alpha_3}{\pi} \frac{n_G}{960} + \left(\frac{\alpha_2}{\pi}\right)^2 \left(-\frac{667111}{110592} + \frac{1603n_G}{432} - \frac{415n_G^2}{1728}\right) + \frac{\alpha_2}{\pi} \frac{\alpha_3}{\pi} \frac{13n_G}{64} \\ &+ \left(\frac{\alpha_3}{\pi}\right)^2 \left(\frac{125n_G}{192} - \frac{11n_G^2}{144}\right) + n_t \frac{\alpha_t}{\pi} \left[-\frac{3}{32} - \frac{\alpha_1}{\pi} \frac{593}{10240} - \frac{\alpha_2}{\pi} \frac{729}{2048} - \frac{\alpha_3}{\pi} \frac{7}{64} + \frac{\alpha_t}{\pi} \left(\frac{57}{1024} + \frac{45n_t}{512}\right)\right] \\ &+ \frac{\lambda}{4\pi^2} \left(\frac{\alpha_1}{\pi} \frac{3}{640} + \frac{\alpha_2}{\pi} \frac{3}{128} - \frac{\lambda}{4\pi^2} \frac{3}{64}\right) \right\} \end{split}$$

 $[\alpha_h \text{ and } \alpha_{\tau} \text{ set to zero}]$

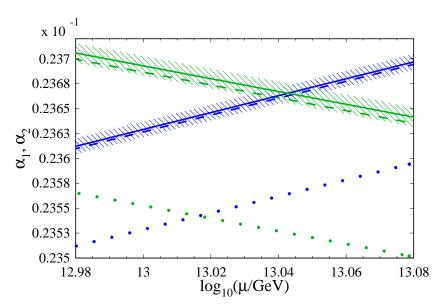
 $n_{\rm G}$: # of generations

 n_t : "# of top quarks"


1 loop:
$$-\frac{43}{24} + \frac{n_G}{3}$$

2 loops: $\propto \alpha_1, \alpha_2, \alpha_3, \alpha_t, \alpha_b, \alpha_\tau$

3 loops:
$$\alpha_i \alpha_i (\ldots) + \lambda \alpha_i (\ldots) + \lambda^2 (\ldots)$$


Numerics

Numerics

3-loop results for β_i

Gauge: [Mihaila, Salomon, Steinhauser'12; Bednyakov, Pikelner, Velizhanin'13]

Yukawa: [Bednyakov,Pikelner,Velizhanin'13]

 β_t : [Chetyrkin,Zoller'13]

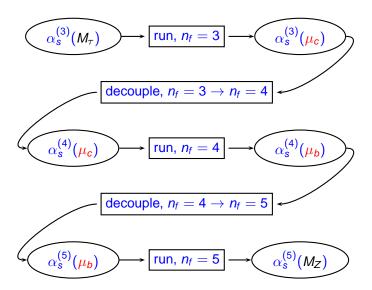
 $Higgs: \hbox{$\tt [Chetyrkin,Zoller'13; Bednyakov,Pikelner,Velizhanin'13]}$

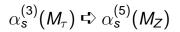
Decoupling

Formalism

- MS scheme ➡ Appelquist-Carrazone decoupling theorem not valid
 ➡ has to be done "by hand"
- field and parameters in full and effective theory are related by so-called "decoupling constants"
- example: $\alpha_s^{(5)} = \zeta_{\alpha_s} \alpha_s^{(6)}$
- n-loop decoupling constant ζ_i computed from n-loop vacuum integral

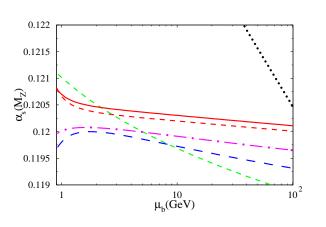
[Chetyrkin,Kniehl,Steinhauser'98]


lacktriangle matching done at (unphysical) scale $\mu_{
m dec}$


QCD:

- 2 loops [Bernreuther, Wetzel'82; Larin, van Ritbergen, Vermaseren'95]
- 3 loops [Chetyrkin,Kniehl,Steinhauser'98]
- 4 loops [Schröder, Steinhauser'06; Chetyrkin, Kühn, Sturm'06]
- 3 loops simultaneous charm and bottom [Grozin, Höschele, Hoff, Steinhauser'11]

QCD: $\alpha_s^{(3)}(M_\tau) \Leftrightarrow \alpha_s^{(5)}(M_Z)$



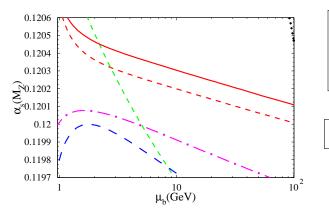
$$\mu_{c,
m dec} =$$
 3 GeV, $\mu_{b,
m dec} \equiv \mu_b$


```
0-loop dec.

1-loop dec.

2-loop dec.

3-loop dec.


4-loop dec. (\beta_4 = 0)

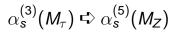
4-loop dec. (\beta_4 = 150)
```

$$\alpha_s^{(3)}(M_\tau) \Leftrightarrow \alpha_s^{(5)}(M_Z)$$

$$\mu_{c,
m dec} = 3$$
 GeV, $\mu_{b,
m dec} \equiv \mu_b$

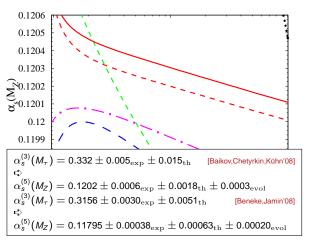

```
0-loop dec.

1-loop dec.


2-loop dec.

3-loop dec.

4-loop dec. (\beta_4 = 0)


4-loop dec. (\beta_4 = 150)
```

```
\delta lpha_s 	ext{(trunc. p.t.)} pprox 0.0002
\delta lpha_s (\mu_{b, 	ext{dec}}) pprox 0.0002
```


$$\mu_{c,\mathrm{dec}} = 3 \text{ GeV}, \quad \mu_{b,\mathrm{dec}} \equiv \mu_b$$

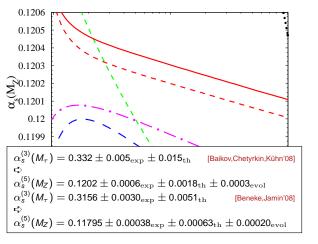

```
0-loop dec.

1-loop dec.

2-loop dec.

3-loop dec.

4-loop dec. (\beta_4 = 0)


4-loop dec. (\beta_4 = 150)
```

```
\deltalpha_{
m s}({
m trunc. p.t.})pprox 0.0002 \ \deltalpha_{
m s}(\mu_{b,{
m dec}})pprox 0.0002
```

$$\alpha_s^{(3)}(M_\tau) \Leftrightarrow \alpha_s^{(5)}(M_Z)$$

$$\mu_{c,
m dec} = 3$$
 GeV, $\mu_{b,
m dec} \equiv \mu_b$

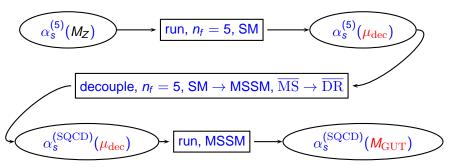

```
0-loop dec.

1-loop dec.

2-loop dec.

3-loop dec.

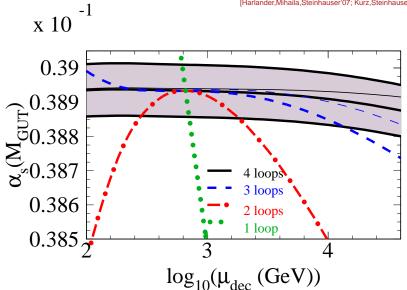
4-loop dec. (\beta_4 = 0)


4-loop dec. (\beta_4 = 150)
```

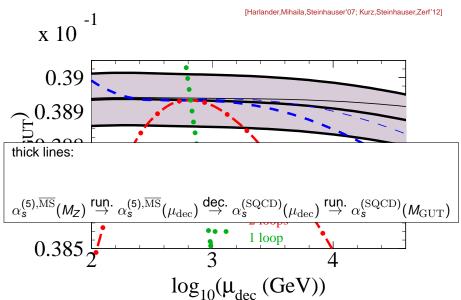
```
\deltalpha_s(	ext{trunc. p.t.})pprox 0.0002 \ \deltalpha_s(\mu_{b,	ext{dec}})pprox 0.0002
```

RunDec [Chetyrkin,Kühn,Steinhauser'00], CRunDec [Schmidt,Steinhauser'12]

QCD: $\alpha_s^{(5)}(M_Z) \Leftrightarrow \alpha_s^{(SQCD)}(M_{GUT})$



SUSY-QCD: $\alpha_s^{(5)}(M_Z) \Rightarrow \alpha_s(M_{GUT})$



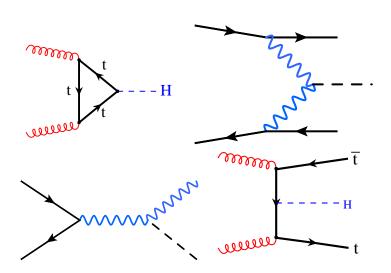
[Harlander, Mihaila, Steinhauser'07; Kurz, Steinhauser, Zerf'12]

SUSY-QCD: $\alpha_s^{(5)}(M_Z) \Rightarrow \alpha_s(M_{GUT})$

SUSY-QCD: $\alpha_s^{(5)}(M_Z) \rightleftharpoons \alpha_s(M_{GUT})$

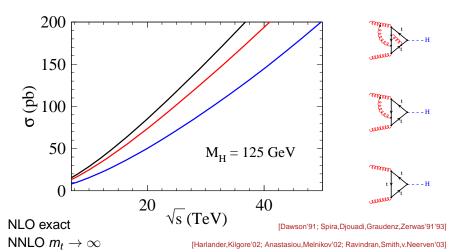
[Harlander, Mihaila, Steinhauser'07; Kurz, Steinhauser, Zerf'12] x 10⁻¹ 0.39 0.389 thin lines: $\alpha_s^{(5),\overline{\mathrm{MS}}}(M_7) \overset{\mathrm{run.}}{\rightarrow} \alpha_s^{(5),\overline{\mathrm{MS}}}(M_t) \overset{\mathrm{dec.}}{\rightarrow} \alpha_s^{(6),\overline{\mathrm{MS}}}(M_t)$ run. $\alpha_s^{(6),\overline{\rm MS}}(\mu_{
m dec}) \stackrel{\mathsf{dec.}}{\to} \alpha_s^{({
m SQCD})}(\mu_{
m dec}) \stackrel{\mathsf{run.}}{\to} \alpha_s^{({
m SQCD})}(M_{
m GUT})$ 1 loop 0.385^{1}_{2} $\log_{10}(\mu_{\text{dec}} (\text{GeV}))$

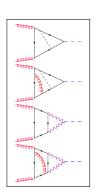
LET: Low-Energy-Theorem

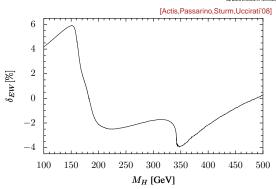

- effective Higgs-gluon coupling: $\mathcal{L}^{ ext{eff}} = rac{H}{V} C_1 rac{1}{4} \left(G_{\mu
 u}^{a}
 ight)^2$
- lacksquare [Chetyrkin,Kniehl,Steinhauser'98]: $C_1=rac{\partial\ln\zeta_{lpha_{f S}}}{\partial\ln m_t}$
- simple-minded explanation: $\frac{\partial}{\partial m_t} \frac{1}{m_t \not p} \sim \frac{1}{m_t \not p} \frac{1}{m_t \not p}$
- see also [Kilian'95; Kniehl,Spira'95]
- **applications:** [Schröder,Steinhauser'06; Chetyrkin,Kühn,Sturm'06; Degrassi,Slavich'08; Mihaila,Reisser'12;

Kurz, Steinhauser, Zerf'12; ...]

Higgs boson production


Higgs production in SM


Gluon fusion to NNLO



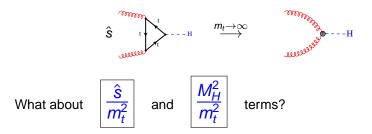
Gluon fusion: EW corrections

• EW $\mathcal{O}(G_F m_t^2)$: $\approx 0.5\%$

[Djouadi,Gambino'94]

• EW/QCD $\mathcal{O}(\alpha_s G_F m_t^2)$: $\approx 0.5\%$

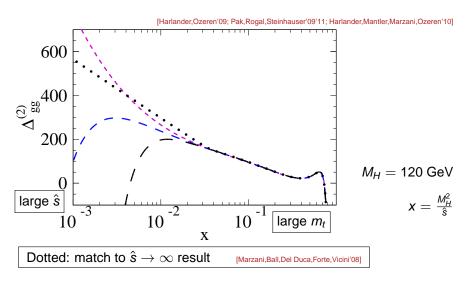
[Steinhauser'98]


■ EW $\mathcal{O}(\alpha)$: ≈ 5%

- [Aglietti et al.'04; Degrassi,Maltoni'04; Actis,Passarino,Sturm,Uccirati'08]
- lacktriangle EW/QCD $\mathcal{O}(\textit{n}_{\textit{f}} lpha lpha_{\textit{s}})$: pprox "complete factorization" [Anastasiou,Boughezal,Petriello'09]
- EW to real rad.: $\approx 1\%$

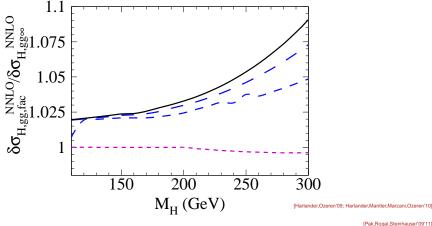
[...Keung,Petriello'09; Brein'10; Anastasiou, et al.'11]

Beyond "heavy-top approximation"

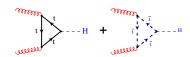


- Do calculation in full theory in the limit of large m_t
- Check effective-theory result. How big are the 1/m² corrections?

[Harlander,Ozeren'09; Pak,Rogal,Steinhauser'09'11; Harlander,Mantler,Marzani,Ozeren'10]

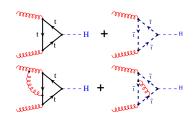

NNLO partonic cross section

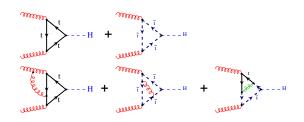
NNLO hadronic results



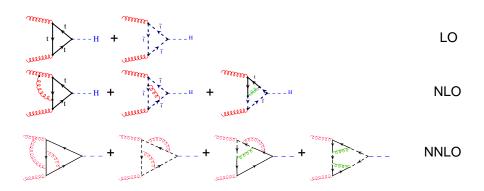
[Fak,Rugal,Stellillausel 09 11]

 $M_H =$ 125 GeV: NNLO corrections change by $\approx 2\%$ $\Leftrightarrow \sigma_{\rm tot}$ changes by < 0.5%


strip effective theory works well!


LO

LO



LO

NLO

+ 57936 more Feynman diagrams

- NLO SUSY-QCD, $M_H \ll M_{SUSY}$, (t, \tilde{t}) sector
- [Harlander, Steinhauser'03'04; Degrassi, Slavich'08]
 [Aqlietti, Bonciani, Degrassi, Vivini'07; Mühlleitner, Spira'08]

NLO Squark loops

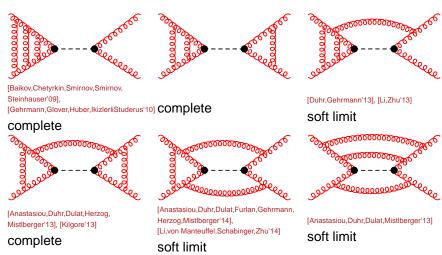
- [Anastasiou et al.'07: Degrassi.Slavich'11: Harlander.Hofmann.Mantler'11]
- NLO SUSY-QCD, (b, b) sector

[Anastasiou.Bucherer.Daleo'07: Mühlleitner.Rzehak.Spira]

NLO SUSY-QCD "full theory"

[Harlander,Liebler,Mantler'13]

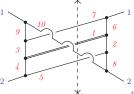
SusHi


[Pak.Steinhauser.Zerf'10'12]

NNLO SUSY-QCD, $M_H \ll M_{SUSY}$, (t, \tilde{t}) sector

Towards N³LO

Leading term for σ_{tot} in soft expansion: [Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger'14] "N 3 LO approx.": [Ball, Bonvini, Forte, Marzani, Ridolfi'13'14], [de Florian, Mazzitelli, Moch, Vogt'14]


Towards N³LO @ SFB/TR 9

• $\mathcal{L}^{\mathrm{eff}} = \frac{H}{V}C_1\frac{1}{4}\left(G_{\mu\nu}^a\right)^2$ available to N³LO (i.e. C_1 to 4 loops)

[Chetyrkin, Kniehl, Steinhauser'98; Schröder, Steinhauser'06; Chetyrkin, Kühn, Sturm'06]

- N³LO virtual corrections [Baikov,Chetyrkin,Smirnov,Smirnov,Steinhauser'09]
- NNLO cross section to $\mathcal{O}(\epsilon)$ [Pak,Rogal,Steinhauser'12; Höschele,Hoff,Pak,Steinhauser,Ueda'12]
- Convolutions of LO, NLO and NNLO partonic cross section with 1-, 2- and 3-loop splitting functions [Höschele,Hoff,Pak,Steinhauser,Ueda'12'13] public computer code: MT.m
- Techniques for MIs: choose "canonical basis"

[Höschele, Hoff, Ueda'14] (USES ideas of [Henn'13])

Conclusions

- lacksquare eta functions in SM to 3 loops
- decoupling for α_s (SM, MSSM)
- *H* production in SM (NNLO, N³LO) and MSSM (NNLO)