Calorimeters

S.C. Solenoid

S.C. Air Core Toroids

Next-to-next-to-leading order QCD techniques and predictions for the LHC

EM Calorimeters

M. Czakon

RWTH Aachen University

Heisenberg-Programm

Forschungsgemeinschaft

Deutsche

luon Shieldings

SFB/TR9 Meeting, Durbach, 15th - 19th September 2014

Results within the SFB project B1

- Top-quark physics
 - ✓ Threshold expansions of hadronic cross sections
 - ✓ Results based on soft-gluon resummation at NNLL
 - ✓ Two-loop virtual corrections
 - $\checkmark~$ Exact results for total cross sections at NNLO
 - ✓ Public software Top++
 - ✓ Complete off-shell effects in hadronic production with NLO accuracy
 - \checkmark Production in association with two jets with NLO accuracy
 - ✓ Applications to PDF studies
 - ✓ Applications to BSM studies
- Subtraction scheme at NNLO
 - ✓ Development of STRIPPER (sector-improved residue subtraction)
 - ✓ Formulation in 't Hooft-Veltman regularization
- General interest
 - ✓ Soft-currents at one-loop with massive partons
 - ✓ Soft function for color octet production at threshold to NNLO

Collaborators

- PhD Students within the SFB
 - 1. Peter Bärnreuther
 - 2. Paul Fiedler
 - 3. David Heymes
- Postdocs within the SFB
 - 1. Giuseppe Bevilacqua
- Main external collaborators
 - 1. Alexander Mitov
 - 2. Costas Papadopoulos
 - 3. Malgorzata Worek

ATLAS

Forward Calorimeters

 $g(z_1, Q^2)$

S.C. Solenoid

S.C. Air Core Toroids

Top-quark physics

M Calorimeters

Muon Shieldings

Dominant effects

t-channel gluon exchange negligible effects

All effects can be resummed !!!

Predictions for hadron colliders

Bärnreuther, MC, Fiedler, Mitov `12 `13

NNLO + NNLL

Collider	$\sigma_{ m tot} ~[{ m pb}]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	$+0.169(2.4\%) \\ -0.122(1.7\%)$
LHC 7 TeV	172.0	$+4.4(2.6\%) \\ -5.8(3.4\%)$	$+4.7(2.7\%) \\ -4.8(2.8\%)$
LHC 8 TeV	245.8	$+6.2(2.5\%) \\ -8.4(3.4\%)$	$+6.2(2.5\%) \\ -6.4(2.6\%)$
LHC 14 TeV	953.6	$+22.7(2.4\%) \\ -33.9(3.6\%)$	+16.2(1.7%) -17.8(1.9\%)

Ν	LO
	_
	Ν

Collider	$\sigma_{ m tot}~[m pb]$	scales [pb]	pdf [pb]
Tevatron	7.009	+0.259(3.7%) -0.374(5.3%)	+0.169(2.4%) -0.121(1.7%)
LHC 7 TeV	167.0	+6.7(4.0%) -10.7(6.4%)	+4.6(2.8%) -4.7(2.8\%)
LHC 8 TeV	239.1	+9.2(3.9%) -14.8(6.2\%)	$+6.1(2.5\%) \\ -6.2(2.6\%)$
LHC 14 TeV	933.0	+31.8(3.4%) -51.0(5.5%)	+16.1(1.7%) -17.6(1.9%)

All numerical results obtained with top++ MC, Mitov `11

Perturbative convergence

Concurrent uncertainties:

Scales	~ 3%
pdf (at 68%cl)	~ 2-3%
$lpha_{ m s}$ (parametric)	~ 1.5%
m _{top} (parametric)	~ 3%

Soft gluon resummation makes a difference:

3%

5% ->

Status experiment

Summary of combinations of total cross section measurements

- Combining measurements from CDF and DØ gives a Tevatron cross section at 1.96 TeV c-o-m of $7.60 \pm 0.41(5.4\%)$ pb, to be compared with the theoretical calculation (NNLO+NNLL) $7.24^{+0.23}_{-0.27}(3.4\%)$ pb (Czakon et. al).
- Combining measurements from ATLAS and CMS gives a LHC cross section at 7 TeV c-o-m of $173 \pm 10(5.8\%)$ pb, to be compared to the theoretical calculation (NNLO+NNLL) of $172.0^{+6.4}_{-7.5}(4.1\%)$ pb.
- The most precise measurements at 8 TeV are from the ATLAS and CMS dilepton channel: $238 \pm 11(4.6\%)$ pb and $227 \pm 15(6.6\%)$ pb.

The NNLO+NNLL SM prediction is $245.8^{+8.8}_{-10.6}(4.0\%)$ pb.

S. Protopopescu, TOP 2013, 15th September 2013

Applications

MC, Mitov, Papucci, Ruderman, Weiler, '14

Ratio to NNPDF2.3 NNLO, α_s = 0.118

Application to PDF determination

MC, Mangano, Mitov, Rojo `13

Ratio to NNPDF2.1 NNLO HERA-only, $\alpha_s = 0.119$

Ratio to NNPDF2.1 NNLO HERA-only, $\alpha_s = 0.118$

Application to α_s determination

Competitive to other collider determinations

0.118

0.116

0.12

0.122

 $\alpha_{s}(m_{)})$

CT10

HERAPDF1.5

MSTW2008

NNPDF2.3

0.11

0.112

0.114

With NNPDF: $lpha_{S}(m_{Z}) = 0.1151^{+0.0033}_{-0.0032}$

0.108

arXiv:1307.1907 (CMS-TOP-12-022)

NNLO methods

- Collinear subtraction for the initial state Known, in principle. Done numerically.
- One-loop squared amplitudes

(the only non-differential contribution)

Körner, Merebashvili, Rogal `07 (quark annihilation) done from scratch for gluon fusion

Additionally: divergences of two-loop amplitudes in quark annihilation: Ferroglia, Neubert, Pecjak, Yang '09

Two-loop amplitudes

Illustration: gluon fusion case

- 422 master integrals
- Solution by numerical differential equations & semi-analytic expansions
- Boundaries with Mellin-Barnes techniques
- About 1h per phase space point

Finite remainder

Bärnreuther, MC, Fiedler '13

Matching coefficients @ NNLO

Beneke, MC, Falgari, Mitov, Schwinn `09

$$\sigma_{q\bar{q}}^{(2)} = \frac{3.60774}{\beta^2} + \frac{1}{\beta} \Big(-140.368 \ln^2 \beta + 32.106 \ln \beta + 3.95105 \Big) + 910.222 \ln^4 \beta - 1315.53 \ln^3 \beta + 592.292 \ln^2 \beta + 528.557 \ln \beta + C_q^{(2)} \Big)$$

$$\sigma_{gg}^{(2)} = \frac{68.5471}{\beta^2} + \frac{1}{\beta} \Big(496.3 \ln^2 \beta + 321.137 \ln \beta - 8.62261 \Big) + 4608 \ln^4 \beta - 1894.91 \ln^3 \beta - 912.349 \ln^2 \beta + 2456.74 \ln \beta + C_{gg}^{(2)} \Big)$$

- Matching coefficients can be obtained from factorization MC, Fiedler `13
- Requires virtual corrections and soft function Bärnreuther, MC, Fiedler `13

$$\begin{split} C^{(2)}_{gg} &= 503.664 - 29.9249 \, n_l + 0.142857 \, {n_l}^2 = 357.611 \\ C^{(2)}_{q\bar{q}} &= 1104.08 - 42.9666 \, n_l - 4.28168 \, {n_l}^2 = 782.208 \, . \end{split}$$

$$\sigma_{q\bar{q}}^{(2)} = \frac{3.60774}{\beta^2} + \frac{1}{\beta} \left(-140.368 \ln^2 \beta + 32.106 \ln \beta + 3.95105 \right) + 910.222 \ln^4 \beta - 1315.53 \ln^3 \beta + 592.292 \ln^2 \beta + 515.397 \ln \beta + C_{q\bar{q}}^{(2)} \right)$$

IS'

Calorimeters

S.C. Solenoid

S.C. Air Core Toroids

Sector-improved residue subtraction scheme STRIPPER

Inner Detector

Muon Shieldings

Subtraction scheme

General subtraction scheme invented as consequence of difficulties in treating double-real radiation for top quark pair production MC '10

Real radiation for tops in most channels calculated as first application in MC '11

Subsequently applied by others to several non-trivial problems:

- Z -> e⁺e⁻ (as a warmup) Boughezal, Melnikov, Petriello '11
- top quark decay Brucherseifer, Caola, Melnikov '13
- b -> X_uev Brucherseifer, Caola, Melnikov '13
- H + jet Boughezal, Caola, Melnikov, Petriello, Schulze '13
- Muon decay spin asymmetry Caola, Czarnecki, Liang, Melnikov, Szafron '14
- Single top-quark production Brucherseifer, Caola, Melnikov '14

	analytic	FS colour	IS colour	local
antenna subtraction	 Image: A set of the set of the		 Image: A set of the set of the	×
STRIPPER	×	 Image: A set of the set of the	 Image: A start of the start of	√
q_T subtraction	 Image: A set of the set of the	×	 Image: A start of the start of	√
reverse unitarity	 Image: A set of the set of the	×	 Image: A set of the set of the	-
Trócsányi et al	×	1	×	 Image: A start of the start of

Currie, LoopFest `14

Main ideas

- parameterization of the massless system with energies and angles modified to allow for a description of all collinear singular configurations with only two variables
- 2. level 1 decomposition into sectors allowing for only one type of collinear singularities
- 3. level 2 decomposition into sectors defining the order of singular limits
- 4. Subtraction at the endpoint derived from known soft and collinear limits of QCD amplitudes
- 5. No analytic integration of the subtraction terms

4D formulation

 p_2

MC, Heymes `14

• Complete set of phase space parameterizations

$$r^{\mu} = r^{0} \hat{r}^{\mu} = r^{0} \begin{pmatrix} 1 \\ \hat{r} \end{pmatrix}, \quad u_{1}^{\mu} = u_{1}^{0} \hat{u}_{1}^{\mu} = u_{1}^{0} \begin{pmatrix} 1 \\ \hat{u}_{1} \end{pmatrix}, \quad u_{2}^{\mu} = u_{2}^{0} \hat{u}_{2}^{\mu} = u_{2}^{0} \begin{pmatrix} 1 \\ \hat{u}_{2} \end{pmatrix}$$

4D formulation

MC, Heymes `14

- Azimuthal averaging
- Separation of finite contributions

LO	$\hat{\sigma}^B$
NLO	$\hat{\sigma}_{\rm F}^{\rm R}, \hat{\sigma}_{\rm F}^{\rm V}, \hat{\sigma}_{\rm U}=\hat{\sigma}_{\rm U}^{\rm R}+\hat{\sigma}_{\rm U}^{\rm V}+\hat{\sigma}^{\rm C}$
NNLO	$\hat{\sigma}_{\rm F}^{\rm RR}$, $\hat{\sigma}_{\rm F}^{\rm RV}$, $\hat{\sigma}_{\rm F}^{\rm VV}$, $\hat{\sigma}_{\rm FR} = \hat{\sigma}_{\rm FR}^{\rm RV} + \hat{\sigma}_{\rm FR}^{\rm VV} + \hat{\sigma}_{\rm FR}^{\rm C2}$,
	$\hat{\sigma}_{\rm SU} = \hat{\sigma}_{\rm SU}^{\rm RR} + \hat{\sigma}_{\rm SU}^{\rm RV} + \hat{\sigma}_{\rm SU}^{\rm C1} , \hat{\sigma}_{\rm DU} = \hat{\sigma}_{\rm DU}^{\rm RR} + \hat{\sigma}_{\rm DU}^{\rm RV} + \hat{\sigma}_{\rm DU}^{\rm VV} + \hat{\sigma}_{\rm DU}^{\rm C1} + \hat{\sigma}_{\rm DU}^{\rm C2}$

• `t Hooft-Veltman regularization

$$F_n \longrightarrow F_n \left(\frac{\mu_R^2 e^{\gamma_E}}{4\pi}\right)^{-(n-1)\epsilon} \left[\prod_{i=1}^{n-1} (2\pi)^{-2\epsilon} \delta^{(-2\epsilon)}(q_i)\right]$$

$$\int d\Phi_n (p_1 + p_2 \to \sum_{i=1}^n q_i) \longrightarrow \int \prod_{i=1}^n \frac{d^3 q_i}{(2\pi)^3 2 q_i^0} (2\pi)^4 \delta^{(4)} (\sum_{i=1}^n q_i - p_1 - p_2)$$

Example: gg -> tT + ng

 SU – contribution 	$\sigma = \frac{\alpha_s^4}{m_t^2} \hat{\sigma}$	$\beta = \sqrt{1 - \frac{4m_t^2}{s}} = 0.5$

	CDR	't Hooft Veltman	Agreement (CDR - HV)
1/ɛ²	$(-8.1 \pm 7.5) \cdot 10^{-6}$	$(1.1 \pm 0.8) \cdot 10^{-5}$	
1/ε	(-5.7 ± 5.9) · 10 ⁻⁵	$(4.2 \pm 4.1) \cdot 10^{-5}$	
Finite Term	(0.2580 ± 0.0003)	(0.2584 ± 0.0002)	(-0.0004 ± 0.0004)

DU -contribution

	CDR	't Hooft Veltman	Agreement (CDR -HV)
1/ɛ ⁴	$(-1.6 \pm 0.9) \cdot 10^{-6}$	$(-8.6 \pm 8.9) \cdot 10^{-7}$	
1/ε ³	$(-5.2 \pm 6.1) \cdot 10^{-6}$	(3.2 ± 5.2) · 10 ⁻⁶	
1/ε ²	$(1.3 \pm 2.4) \cdot 10^{-5}$	$(-1.0 \pm 1.7) \cdot 10^{-5}$	
1/ε	$(7.4 \pm 9.3) \cdot 10^{-5}$	(1.9 ± 6.2) · 10 ⁻⁵	
Finite Term	(-0.03041 ± 0.00035)	(-0.03045 ± 0.00042)	(0.00004 ± 0.00042)

ATLAS

Hadron

Forward Calorimeters

S.C. Solenoid

S.C. Air Core Toroids

Conclusions and outlook

M Calorimeters

Muon Shieldings

Conclusions and outlook

- Provided state of the art results for top-quark cross sections
- Developed a new subtraction scheme with non-trivial applications
- Differential description of top-pair production nearly finished
- Future work on
 - 1. Combined NNLO production and decay for top-pairs
 - 2. Publicly available implementation of STRIPPER