

Optimization of Reconstruction Algorithm for BeamCal (ILC)

Lucia Bortko, DESY on behalf of FCAL-collaboration

24th FCAL WS | Institute of Space Science - Bucharest | 26 May 2014

HELMHOLTZ

The Aim and Content

The Aim:

- find optimal parameters for reconstruction algorithm
- investigate and compare characteristics of calorimeter applying this algorithm

Content:

- Introduction
- Searching for algorithm parameters
 - looking into the energy depositions in cells precisely
 - comparing with another algorithms
 - checking with fake rate
- Calorimeter characteristics studies
 - shower reconstruction efficiency
 - energy deposition and resolution
- Conclusion

Beam Calorimeter for ILC

Beam parameters from the ILC Technical Design Report (November 2012)

- Nominal parameter set
- Center-of-mass energy 1 TeV

BeamCal aimed:

- Detect sHEe
- Determine Beam Parameters
- Masking backscattered low energetic particles

BeamCal Segmentation

Segmentation (US)

pads size are the same

pads size are proportional to the radius

Segmentation (PS)

Similar number of channels

Energy Deposition due to Beamstrahlung

- Beamstrahlung (BS) pairs generated with Guinea Pig
- Energy deposition in sensors from BS simulated with BeCaS (Geant4)
 - → considered as Background (BG)
- RMS of the averaged BG
 - \rightarrow considered as noise (for SNR)
- E_{dep} is the same, but E_{dep} /pad is different!

Search parameters for reconstruction Algorithm

The goal:	find optimal parameters of reconstruction algorithm					
In my hands:	deposited energy in each cell of calorimeter from shower and RMS of background(BG)					
Parameters to apply:	 how many sigma(RMS) to apply which layers should be considered how many cells in a row 					
Requirements:	 fake rate < 2% (strictly!) good :efficiency of reconstruction -energy resolution -spatial resolution 					

Algorithm

- 1. SH + BG average by 10th previous BXs BG
- 2. Select layers from 5th to 20th
- 3. Applying energy threshold 5 RMS
- 4. Combine to towers
- 5. Search Max energetic tower
 - * if there \geq 13 cells (not necessarily sequent), search for neighbor towers
 - * if in neighbor ≥ 9 cells & at least 1 neighbor
 - => shower defined
 - * Consider candidate towers to shower within Rm=1.2 cm or at least 8 pads
 - around max energetic tower
 - => shower created
- 6. Next shower: repeat step 5
- 7. For each shower calculate
 - R_{COG} , ϕ_{COG} , E_{sh}

4

Reconstructed SH

Without BG

Idea

Compare energy deposition on small radii (most problematic area for reconstruction) along Z-axis for:

- tower of the shower core and tower of the RMS on small radii
- max energetic tower of (BG average_BG) and

tower of the RMS

Tower profiles from Shower core and RMS on small R

Tower profiles from Subtracted BG and RMS on small R

But for showers(previous slide) we still have possibility to reconstruct, especially going further with radius

Choosing parameters. Fake Rate.

Source	Difference in conditions	Layers to be considered	RMS applyed	Min number of cells in a row	
				In SH max	In neighbor
Max SH Tower and RMS along Z comparison (previous slides)	1 Tev	5-20 (25?)	>2 RMS (chosen 5 RMS)	13	9
Thesis of Katharina Kuznetsova, 2006	500GeV , diff size of pads, type of segmentation - US	4-17	3 RMS	10	6
FCAL Paper, 2004	500 GeV	2-20	5 RMS	9	6

Checking fake rate (100 files were used)

	Layers to be consider ed	RMS applyed	Min number of cells in a row		Fake rate	
			SH max	Neighbor	US	PS
Case 1 (suitable)	5-20	5 RMS	13	9	2 %	0 %
Case 2 (relaxed)	5-20	5 RMS	10	6	3%	3%

Efficiency

- 1. Reconstruction showers on top of BG -> Number of ring rReco and phiReco
- Reconstruct showers, no threshold applied (0*RMS, cause not all SH on small radii reconstructing) -> rTrue, phiTrue
- 3. If | rTrue rReco| < Rm and |phiTrue phiReco| < Rm, then shower reconstructed correctly and ratio rReco/rTrue = efficiency
- 4. Else (| Rtrue- Rreco| > Rm) fake shower

Efficiency 500 GeV

Efficiency 200 GeV

Efficiency 50 GeV

Energy deposition from 200 GeV electrons

Deposited energy over the all radii of calorimeter:

Energy deposited in sensors vs Energy of electron

Energy resolution vs Energy of Electron for low BG area

7<R<12 [cm]

Energy resolution vs Energy of Electron for high BG area

E resolution vs Radius

Conclusion

> According available data the optimal parameters of reconstruction algorithm were chosen.

For more precise algorithm correctness estimation more statistics by background files is required

- > Algorithm was applied for studying calorimeter characteristics
 - Shower reconstruction efficiency is better for proportional segmentation for energies starting approximately from 200 GeV. For energies 200 GeV and below it is almost impossible to reconstruct showers in area of high background(up to 5-7 cm) for both segmentations
 - The relative energy resolution for the case of background absence is more then $\frac{40\%}{\sqrt{E}}$

And energy resolution vs radius worse significantly in high background area – 3 times worse then in low background area

Presented algorithm has quit strict criteria. By relaxing them it is expecting to get a little better characteristics of BeamCal, but nevertheless the high background area stays problematic for shower reconstructions with these beam parameters

Thank you for your attention!

Back up

Lucia Bortko | BeamCal Energy and Spatial Resolution | 2013-12-12 | DESY Zeuthen | Page 24/22

Simulation Showers

- Sector area
- Distribution: RD

в соответствии с имеющимися данными оптимальные параметры реконструкционного алгоритма были подобраны. Но для более точной оценки правильности работы алгоритма требуется набрать большую статистику по файлам фона.

Алгоритм был применен для изучения характеристик калориметра.

 эффиктивность восстановления ливней лучше с пропорциональной сегментацией для энергий начиная примерно от 200 Гев.для энергий 200 GeV и ниже ливни практически невозможно восстановить в области высокого фона (до 5-7цм) у обоих сегментации.

Beam Calorimeter for ILC

Energy Deposition due to Beamstrahlung

Shower from Single High Energy Electron

