

Optimization of Reconstruction Algorithm for BeamCal (ILC)

Lucia Bortko, DESY on behalf of FCAL-collaboration

24th FCAL WS | Institute of Space Science - Bucharest | 26 May 2014

HELMHOLTZ

The Aim and Content

The Aim:

- find optimal parameters for reconstruction algorithm
- investigate and compare characteristics of calorimeter applying this algorithm

Content:

- Introduction
 - Searching for algorithm parameters
 - looking into energy depositions in cells precisely
 - comparing with another algorithms
 - fake rate
- Calorimeter characteristics studies
 - shower reconstruction efficiency
 - energy deposition and resolution
 - spatial resolution?
- Conclusion

Beam Calorimeter for ILC

Beam parameters from the ILC Technical Design Report (November 2012)

- Nominal parameter set
- Center-of-mass energy 1 TeV

BeamCal aimed:

- Detect sHEe
- Determine Beam Parameters
- Masking backscattered low energetic particles

Beam Calorimeter for ILC

Energy Deposition due to Beamstrahlung

Shower from Single High Energy Electron

Search parameters for reconstruction Algorithm

The goal:	find optimal parameters of reconstruction algorithm
In my hands:	deposited energy in each cell of calorimeter from shower and RMS of background(BG)
Parameters to apply:	 how many sigma(RMS) to apply which layers should be considered how many cells in a row

Requirements: - fake rate < 2% (strictly!) - increase: --efficiency of reconstruction --energy resolution --spatial resolution

Simulation Showers

- Sector area
- Distribution: RD

Algorithm

- 1. SH + BG average_BG
- 2. Layers from 5 to 20
- 3. Energy threshold 5 RMS
- 4. Combine to towers
- 5. Search Max energetic tower
 - * if there \geq 13 cells (not necessarily sequent), search for neighbor towers
 - * if in neighbor \geq 9 cells & at least 1 neighbor
 - => shower defined
 - * Consider candidate towers to shower within Rm=1.2 cm or at least 8 pads around max energetic tower
 - => shower created
- 6. Next shower: repeat step 5
- 7. For each shower calculate
 - R COG and Phi COG
 - Energy

Algorithm

1. SH + BG

with BG

wo BG

- +
- 2. average BG by $10^{th}\ previous\ BX$
- 3. Select layers from 5th to 30th. Search for towers contains at least 10 sequent pads with Edep>0 along Z axis.
- 4. Searching in that towers tower with maximum energy deposition
- 5. Look on to 8 neighbor towers around that tower
- 6. Get output: R_{COG} , ϕ_{COG} , E_{clu}

Idea

Compare energy deposition on small radii (most problematic area for reconstruction) along Z-axis for:

- tower of the shower core and tower of the RMS on small radii
- max energetic tower of (BG average_BG) and

tower of the RMS

Tower profiles from Shower core and RMS on small R

Tower profiles from Subtracted BG and RMS on small R

But for showers(previous slide) we still have possibility to reconstruct, especially going further with radius

Choosing parameters. Fake Rate.

Source	Difference in conditions	Layers to be considered	RMS applyed	Min number of cells in a row	
				In SH max	In neighbor
Max SH Tower and RMS along Z comparison (previous slides)	1 Tev	5-20 (25?)	>2 RMS (chosen 5 RMS)	13	9
Thesis of Katharina Kuznetsova, 2006	500GeV , diff size of pads, type of segmentation - US	4-17	3 RMS	10	6
FCAL Paper, 2004	500 GeV	2-20	5 RMS	9	6

Checking fake rate (100 files were used)

	Layers to be consider ed	RMS applyed	Min number of cells in a row		Fake rate	
			SH max	Neighbor	US	PS
Case 1 (suitable)	5-20	5 RMS	13	9	2 %	0 %
Case 2 (relaxed)	5-20	5 RMS	10	6	3%	3%

Efficiency

- 1. Reconstruction showers on top of BG -> Number of ring rReco and phiReco
- Reconstruct showers, no threshold applied (0*RMS, cause not all SH on small radii reconstructing) -> rTrue, phiTrue
- 3. If | rTrue rReco| < Rm and |phiTrue phiReco| < Rm, then shower reconstructed correctly and ratio rReco/rTrue = efficiency
- 4. Else (| Rtrue- Rreco| > Rm) fake shower

Efficiency 500 GeV

Efficiency 200 GeV

Efficiency 50 GeV

E deposition from 200GeV electrons

Edep vs Ee for radius: 3.5<R<7 (cm)

Without BG - sigma criteria is zero!!

Edep vs Ee for radius: 7<R<12 (cm)

E resolution vs Ee for radius: 3.5<R<7(cm)

E resolution vs Radius

Conclusion

Back up

