Proton Structure Functions at low x

S. Glazov, DESY

PDF School, Zeuthen 12/11/2008

1

Deep Inelastic Scattering

e(k') Kinematics of inclusive scattering is determined by Q^2 and Bjorken x. In x "scale parameter" 1/3 - equal sharing among quarks. Proton structure for

- $x \ge 0.05$ valence quarks
- $x \leq 0.05$ coupled quark-gluon QCD evolution. Large gluon density.

At small x complex dynamics which must obey simple asymptotic solutions (unitarity).

DIS scattering experiments at HERA with $\sqrt{S} = 318$ GeV provide

- A unique tool to study validity of the QCD evolution for a wide range in x and Q^2 .
- Within the standard QCD evolution, measurement of the proton parton densities.

Knowledge of the proton structure is vital for a number of "practical" applications including pp colliders (LHC).

PDF determination

$$\frac{d^2 \sigma_{e^{\mp p}}^{NC}}{dx dQ^2} = \frac{2\pi \alpha^2 Y_+}{xQ^4} \left(F_2 - \frac{y^2}{Y_+} F_L \pm \frac{Y_-}{Y_+} xF_3 \right) \quad Y_{\pm} = 1 \pm (1-y)^2$$

Leading order relations:

F_2	$= x \sum e_q^2(q(x) + \bar{q}(x))$
xF_3	$= x \sum 2e_q a_q(q(x) - \bar{q}(x))$
$\sigma^{CC}_{e^+p}$	$\sim x(\bar{u}+\bar{c}) + x(1-y)^2(d+s)$
$\sigma^{C\dot{C}}_{e^-p}$	$\sim x(u+c) + x(1-y)^2(\bar{d}+\bar{s})$
$pp \to (\ell \bar{\ell}) X$	$\sim \sum x_1 x_2 q(x_1) \bar{q}(x_2)$

Gluon is determined from F_2 scaling violation and from jet cross section.

 $F_L = 0$ at leading order; proportional to Gluon at higher orders.

For low Q^2 :

 $F_2 \sim \sigma_L + \sigma_T \quad F_L \sim \sigma_L$

which implies $0 \leq F_L \leq F_2$.

• In Quark-Parton Model $F_L = 0$ for spin 1/2 quarks.

final

 $J_{z} = +1/2$ state

- In QCD, $F_L > 0$ due to gluon radiation.
- At low x, sea quark and gluon density are measured using F_2 and its scaling violation, $dF_2/d \log Q^2$. F_L measures gluon via cross section polarization decomposition.

4

final "

HERA and LHC kinematics

 x_1, x_2 are momentum fractions. Factorization theorem states that cross section can be calculated using universal partons \times short distance calculable partonic reaction.

$$x_{1,2} = \frac{M}{\sqrt{S}} \exp(\pm y)$$

Notation clash: y – rapidity (LHC) vs y – inelasticity (HERA, $Q^2 = Sxy$).

 \rightarrow production cross section measurement of Higgs is a key ingredient to disentangle new physics scenarios.

- For x < 0.01xS and xGdominate.
- Very rapid evolution for xSand xG.
- Analysis based on very new H1 data.

Intermediate Summary

- Production of $M \sim 100$ GeV particles in the central detector region at LHC corresponds to Bjorken 0.002 < x < 0.02.
- For this x range gluon and sea quarks dominate.
- Gluon and sea are determined from the F_2 structure function data, which for this x range come from HERA for $5 \leq Q^2 \leq 500 \text{ GeV}^2$ and evolved to higher Q^2 using QCD evolution.

HERA, H1 and ZEUS. 1992-2007.

Sun Jul 01 12:01:15 2007

DIS Event Reconstruction

Both the scattered electron and hadronic final state can be used to reconstruct event kinematics.

Structure Function F_2 at low x

Recent measurement peformed by the H1 collaboration. Final result base on HERA-I data.

Precision reaches \sim 1.5%.

 $F_2(x, Q^2)$ shows strong rise as $x \to 0$, the rise increases with increasing Q^2 .

F_2 Scaling violation at low x

Large scaling violation at low x — large gluon density. Good agreement between the data and theory.

Data precision allows for local determination of $\partial F_2/\partial \ln Q^2 \sim \alpha_S G$. Note that there is a strong anti-correlation between the data points. Good consistency between data and QCD fit (even for extrapolation to low Q^2).

Sources of Experimental Uncertainty

For a double differential cross section measurement, sources of uncertainties are luminosity, kinematic determination and identification efficiency.

 $\delta \mathcal{L} \quad \delta \sigma_r^{stat}, \quad \delta \sigma_r^{corr \ syst} \quad \delta \sigma_r^{uncorr \ syst}$

- Global normalizations arise from luminosity uncertainty δL, global inefficiencies. Affect data sets uniformly. Typical value ~ 1.5 2%. Most serious for PDFs: 3σ shift generates 4.5 6% bias with only 9 units of χ².
- Correlated systematic uncertainties, $\sigma_r^{corr \ syst}$ arise from misreconstruction of event kinematics, background. Affect groups of experimental points, typically y dependent \rightarrow can change x-shape globally, affect xG(x).
- Uncorrelated systematic uncertainties, $\sigma_r^{uncorr\ syst}$ arise from local efficiencies, miscalibrations. Often the largest source of uncertainty but impact on PDFs is ~ $1/sqrt(N_{meas})$.
- Statistical uncertainties, σ_r^{stat} at HERA are small for $x \sim 0.005$ range, become important for high Q^2, x .

- Use $ep \rightarrow ep\gamma$ Bethe-Heitler process, detect the scattered photon in a photon tagger ~ 100 m away from the IP.
- QED prediction with 0.5% precision (effect of higher orders).
- Experimental uncertainty dominated by detector acceptance knowledge ($\sim 90 \pm 1\%$), energy calibration, and beam longitudinal profile.
- \rightarrow complicated measurement. Ultimate experimental uncertainty: 1%, uncorrelated H1 vs ZEUS.

Correlated Systematic Uncertainties

Example: scattered electron energy E'_e . Affects y, Q^2 .

- Calibrated to the electron beam energy using the scattered electron angle and the angle of hadronic final state.
- Check E'_e using "kinematic peak" distribution 0.2% precision.
- Measure non-linearity with $\pi^0 \to \gamma\gamma$, $J/\psi \to e^+e^-$, QED-Compton $ep \to ep\gamma$ events.

Combination of HERA data

Average H1 and ZEUS data before applying QCD analysis. Achieved by fitting σ_r values, global normalizations and the correlated systematic uncertainties.

Experiments cross calibrate each other: total uncertainties reduced, sometimes better than $\sqrt{2}$.

Combined HERA data

HERA data approaches precision of fixed target experiments. Combined data vs theory: stringent test of DGLAP evolution.

Sea S and gluon g are far more important at low x. Mind the $\times 0.05$ scale factor for them.

Fit to combined H1/ZEUS data returns much more precise xG(x) compared to global fits of CTEQ and MRST: improved data precision and also different data errors treatment.

Model Uncertainties

Experimental errors at low x are often smaller compared to model uncertainties:

- Evolution starting scale, lowest Q^2 in data.
- Flavour separation at low x, strangeness fraction.
- Masses of heavy **c**, **b** quarks
- α_S value (not in the bands).

Typical functional forms at a starting scale are

$$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2}+...),$$

additional uncertainty from the choice of the parameterization.

Model Uncertainties for LHC predictions

A study performed by E. Perez and A. Cooper-Sarkar based on HERAPDF 0.1:

- Different treatment of experimental errors ("Hessian" for EP vs "Offset" for ACS) of the H1-ZEUS averaged dataset does not affect uncertainty for W^- production
- Significantly smaller errors vs CTEQ 6.1 estimation.
- Model uncertainties seem to have larger impact vs experimental precision.

HERA and other alternative PDF sets

- HERAPDF 0.1 is included in the latest release of LHAPDF, version 5.6.0.
- This release is already inlcuded in ATLAS software.
- HERA PDF set is based on HERA data only, returns smaller experimental uncertainty and allows to estimate model uncertainties, which are typically relatively large.
- In addition, release 5.6.0 includes NNPDF set, which is base on very open Neural Net parameterization, can be used for concervative estimate of the parameterization bias.

HERA runs at reduced E_p to measure F_L

- Last 3 months of HERA operation are dedicated for F_L measurement.
- Luminosity is proportional to E_p^2 , from the beam focusing, thus reduced vs nominal 920 GeV run.
- Successful HERA operation, 13.6 pb⁻¹ and 6.5 pb⁻¹ collected for 460 and 575 GeV run.

Determination of F_L requires measurement at high $y \approx 1 - \frac{E'_e}{E_e}$ H1 estimates background directly from data using the measured charge of the electron candidate.

Background Estimation

 e^+p scattering:

- + Scattering: lepton has the $\frac{4}{2}$ 15. beam charge (positive).
- Background from hadronic particles, γ conversions is almost charge symmetric: $N_{ba}^+ \approx N_{ba}^-$

 \rightarrow require **positive** charge for the signal sample. Estimate remaining background using negative sample.

$$\sigma_r(y) = F_2 - \frac{y^2}{1 + (1 - y)^2} F_L$$

- Linear fit to get F_2 and F_L
- Relative normalization from low y data

Data at $\mathbf{E}_{\mathbf{p}} = \mathbf{575}$ provides cross check and extends measurement to low x.

Average F_L by H1 at medium Q^2

 F_L compared to prediction based on H1 QCD fit to published by H1 DIS cross section data and global MSTW, CTEQ fits.

- Updated for ICHEP to include $E_p = 575$ GeV data.
- Consistent with NLO prediction and H1.

Average F_L by H1, extended range, preliminary

• Extend to higher Q^2 using e scattered in LAr calorimeter.

• Future: extend to lower Q^2 using Backward Silicon Tracker. Good agreement with theory expectations.

Flavor Decomposition

We want to have predictions for W^+ , W^- , Z with the main experimental input from F_2^{em} :

- More important d, s quarks
- For Z, significant contribution from b.

Measurements of heavy flavors

Measure $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$ structure functions by tagging the c quarks via D^* decay or c/b quark using secondary vertex.

PDFs for LHC energy scale: LHeC

Consider LHC result: $\sigma(H)/\sigma(Z)$ about 3σ away from SM prediction. New physics or new QCD evolution ?

Measurement of PDFs close to LHC energy could be performed by 70 GeV \times 7000 GeV ep machine at CERN: **LHeC**.

- High luminosity (10 fb⁻¹): yield of $\sim 10^5$ events at 10000 GeV².
- e^+ and e^- beams to measure xF_3 .
- Lepton beam polarization (?) for $F_2^{\gamma Z}$.

An attractive machine at its cost.

Experimental data still to come

- Final analysis of F_2 structure function at low $Q^2 < 100 \text{ GeV}^2$ and low x (H1).
- Analysis of σ_r at high Q^2 and high x using HERA-II data.
- Measurement of F_L structure function in complete kinematic domain.
- HERA-II analysis of $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$.
- Combination of all HERA data.
- PDF extraction based on the combined HERA data.

- HERA enables precise determination of PDFs for the LHC kinematic range.
- DGLAP evolution works very well so far.
- Experimental input for PDFs could be vastly expanded with LHeC.
- More information will come with finalization of HERA analyzes, combination of H1/ZEUS data, measurement of heavy flavors and of F_L .