Performance evaluation of RF-Backplane option for MTCA.4 system

Tomasz Leśniak Warsaw University of Technology Institute of Electronic Systems For the DESY LLRF Team tomasz.lesniak@desy.de

3rd MTCA Workshop DESY, 10.12.2014

Reminder: What is the RF-Backplane?

RF channels (27 single-ended channels, star topology)

DC to 6GHz, optimized phase drifts, insertion losses and signal reflections (target: -15dB of |S11|)

Low-jitter CLK distribution (22 differential pairs, star topology)

DC power distribution network for each µRTM (+VV, -VV) 3x10 diff. pairs and eRTM (PP)

connectors

ERMET ZD,

Return and insertion losses

RF channel-to-channel crosstalks

CLK to RF channel-to-channel crosstalks

Phase stability over temperature (phase drifts)

Poor reflection coefficient and high attenuation in early versions of RF-Backplane

Changed to RF PCB substrate for final version

Optimized PCB layout for RF connectors (3D EM simulations): antipad size, elippse-shaped antipad, minimized via stub

Return and insertion losses measurement setup

- Measurements in laboratory performed by calibrated VNA (multiline TRL calibration)
- Broadband 0.2-7GHz S-parameter characteristics were gathered

Return and insertion losses measurement setup (2)

Input/output SMA to Radiall adaptors

TRL calibration kit PCB

Return and insertion losses (2)

Slot	A _{REF} [dB]	Γ _{REF} [dB]	A _{LO} [dB]	Γ _{LO} [dB]	A _{CAL} [dB]	Γ _{CAL} [dB]
4	2.4	-24.3	2.9	-40.0	2.5	-26.1
5	2.1	-23.4	2.7	-20.5	2.4	-17.9
6	2	-20.4	2.3	-25.7	2.3	-22.4
7	2	-15.9	2.2	-18.7	2.1	-22.3
8	1.6	-22.5	2.2	-21.0	2.0	-19.0
9	1.6	-24.5	2.0	-23.0	1.7	-26.8
10	1.5	-16.0	1.9	-18.6	1.6	-18.8
11	1.4	-19.4	1.5	-22.4	1.5	-19.6
12	1.1	-16.2	1.4	-19.1	1.4	-30.0

Return losses

Time Domain Reflectivity Measurements

TDR measurements of impedance profile versus time

Crosstalk Measurements Setup

 Setup description: Input adaptor – µRFB_CLKIN3 input test board Output adaptor – µRFB_OUTv3.0 output test board µRFB – RF-Backplane v3.2 SA – spectrum analyser (ZVL6 from Rohde&Schwarz) GEN – signal generator (SMB-106A from Rohde&Schwarz)

Acceptable crosstalk < 80dB

 Automated test setup for crosstalk measurements (generator, switch matrix, adapter boards, spectrum analyser, software)

RF channel-to-channel crosstalks

		Aggressors								
		REF4	REF5	REF6	REF7	REF8	REF9	REF10	REF11	REF12
	CAL4	90	111	96	104	110	103	94	99	97
	CAL5	102	89	99	106	105	111	99	101	107
	CAL6	101	105	97	115	108	100	105	104	109
ns	CAL7	107	111	106	90	109	108	107	106	112
cţi	CAL8	114	104	107	112	87	104	108	107	115
Š	CAL9	111	104	108	108	110	94	109	107	108
	CAL10	110	100	108	104	111	103	90	104	109
	CAL11	103	104	108	105	112	102	111	102	104
	CAL12	96	104	104	104	107	103	101	103	92
Aggressors										
		REF4	REF5	REF6	REF7	REF8	REF9	REF10	REF11	REF12
	LO4	93	109	95	97	115	105	105	112	113
	LO5	103	102	106	93	114	101	109	109	112
	LO6	102	95	93	113	119	112	106	111	117
ns	LO7	100	102	104	97	113	104	111	109	113
ctir	LO8	95	102	109	103	97	106	106	113	114
Ξ	LO9	95	97	111	111	115	93	107	108	109
	LO10	97	100	114	112	118	111	103	109	105
	LO11	95	111	112	114	113	102	107	95	109
	LO12	103	105	108	106	109	101	107	109	93
		Aggressors								
		LO4	LO5	LO6	LO7	LO8	LO9	LO10	LO11	LO12
	CAL4	88	102	113	3 11	0 11	4 108	3 110	112	110
	CAL5	113	90	108	3 11	2 11	<u>1 11'</u>	109	109	114
	CAL6	103	106	94	10	5 11	3 109) 111	110	117
ms	CAL7	101	108	111	9	5 11	1 110) 112	111	116
cti	CAL8	97	103	106	5 11 ⁻	1 9	7 111	109	111	111
Ξ	CAL9	92	104	102	2 10	5 11	9 100) 107	110	106
	CAL10	90	114	104	10	1 10	8 109	9 96	111	114
	CAL11	89	102	2 109) 10	1 11 [,]	4 110) 109	97	113
	CAL12	104	113	112	2 11;	3 11	8 103	3 107	102	99

CLK to RF channel-to-channel crosstalks

		Victims								
		REF4	REF5	REF6	REF7	REF8	REF9	REF10	REF11	REF12
	CLKA4	109	108	110	110	109	110	111	108	109
	CLKA5	111	108	107	108	107	109	110	109	113
	CLKA6	106	111	108	108	108	110	110	108	110
	CLKA7	110	109	109	108	106	107	108	110	111
	CLKA8	110	111	109	109	109	108	109	108	109
	CLKA9	111	111	108	110	110	111	111	110	109
rs	CLKA10	109	113	109	110	110	109	110	109	110
esso	CLKA11	110	107	109	111	110	109	111	111	108
Aggr	CLKA12	106	108	111	110	110	108	110	111	108
	CLKB4	106	111	111	111	112	107	109	110	109
	CLKB5	111	109	107	111	108	108	108	110	110
	CLKB6	111	109	108	110	111	110	109	110	108
	CLKB7	108	110	110	109	109	111	108	109	108
	CLKB8	110	107	111	111	111	109	108	110	108
	CLKB9	108	111	109	110	110	110	108	111	109
	CLKB10	109	109	107	109	110	109	110	111	109
	CLKB11	107	111	108	111	109	109	109	108	110
	CLKB12	110	109	109	109	108	109	108	110	108

RF-Backplane provides excellent isolation between CLK and RF channels. Results might be limited by dynamic range of measurement setup/fixture.

Phase Stability Over Temperature (1)

Test board based on the same subtrate and stackup as RF-Backplane

 Differential approach: two RF paths that differ only in lenght of stripline affected by phase drifts

Phase Stability Over Temperature (2)

Results for 10 cm long test stripline:

Phase drift coefficient for the longest RF line (34cm) on the RF-Backplane is about 85fs/K

Conclusions

- Return losses up to 6 GHz are better than -10dB (@1.3GHz |S11| < -16dB)</p>
- Insertion losses are less than 3dB
- RF channel-to-channel crosstalk of below -87dB (excellent)

 Crosstalk between CLK and RF channels lower than -106 dB (probably even better, limited by measurement equipment)

- Phase drift coefficient versus temperature for longest RF channels does not exceed 85fs/K
- Phase stability over humidity tests are planned this month

Thank you for attention!

