

Towards a Standard Hardware API
and a Standard Device Model

Martin Killenberg
on behalf of the

PICMG software working group

MicroTCA Workshop 2014
DESY, Hamburg

Introduction

PICMG Design Guides
● Give implementation recommendations
● Facilitate re-usability and portability

Standard Hardware API
● Better interoperation of modules from different vendors

Standard Device Model
● Easier software integration of hardware, independent

from vendor and protocol

Standard Hardware API (SHAPI)

● Devices should be able to identify themselves
● Standard Register Set

– A set of defined registers which can be found in all devices

– Firmware name, version, vendor, ID

– Hardware name, version, vendor, ID

– Device capabilities and resources
● DMA
● Interrupts

● Independent from the hardware protocol
● Mechanism to address sub-devices

SHAPI Extensibility

● Devices can have sub-devices
– Sub-device firmware name, version, ID

– Sub address range for the specific functionality

● Sub-device examples
– Mezanine cards

– MicroTCA.4 rear transition modules

– Reusable algorithm blocks

SHAPI Advantages

● Better interoperability of different vendors
● Devices can use a common driver
● Drivers can detect resources present on a

particular device

Standard Device Model

Abstract interface to communicate
with a device
● Complete abstraction of the

hardware
● Device name mapping

– Instantiation and connection
independent from the protocol

● Device I/O
– Streaming device

● Write a sequence of data

– Address (or “memory-”) mapped
device (MMIO)

● Access individual registers

Driver

Standard Device Model

Streaming MMIO

Hardware

Stackability

● SDM Drivers present
SDM API up- and
downstream

● Can build hierarchies
of “stacks” and
“groups” of devices.

SDM i2c “X” driver

Streaming MMIO

i2c-controller “X”

ADC

MMIO

SDM i2c generic driver

MMIO

MMIO

SDM ADC driver

MMIO

Streaming

Device Name Mapping

Standard device names
● URIs:

//host/interface:[instance][;protocol][=parameters]

● Alias Names

● SDM knows how to open different protocols on
different platforms, all accessed via the same interface

● High level software use aliases (functional names)
which are independent from protocol and instance

Streaming and Address Based I/O

Two main I/O methods
● Streaming I/O

– A stream of data is written to the same channel

– Seeking in the stream can be possible (device dependent)

● Address based I/O
– Address space with registers

– Registers are accessed by their offset

– Random access

Both versions are flavours of the Standard I/0 Device

Sub-Devices

A device can consist of several sub-devices
● Different Base Address Ranges in PCIe
● Connect different hardware devices to one logical

entity
– ADC and piezo actuator of a feedback loop

● Streaming and address based access in the same
device
– Address based for configuration of an ADC

– Stream to read the actual ADC output

Examples

● Access PCIe addresses in user space
● Virtual devices for testing and software

development
● Tunnel an address space through a different

protocol
– Address based access over Ethernet or RS232

– Access an SPI or I2C bus on an MicroTCA AMC via
PCIexpress

Reference Implementations

Provide reference implementations for different
languages and platforms

● Implementation examples
● Ready-to-use code for a fast start

● C (procedural)
● C++ (object oriented)
● Java?
● Python?

● Windows
● Linux

Status

● Draft versions getting last iterations in the
PICMG SW working group

● Reference implementations being written for C
(Windows) and C++ (Linux)

● Help welcome for Java and Python

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

