Cosmic ray propagation with DRAGON

few recipes to cook good models

D. GRASSO (INFN, Pisa)

CASPAR school, DESY 15-19 Sep. 2014

Geometry of the galactic CR pool

Our position: $R \simeq 8.3$ kpc $z \simeq 0$

CR nuclei

The transport equation (2d)

(Ginzburg & Syrovatsky, 1964)

boundary condition: $N^{i}(r, z) = 0$ either for r = R or |z| = L

A large number of parameters to be fixed against multichannel CR data !

CR nuclei data

Source term

• Spatial dependence

we assume sources trace SNRs

distributions implemented in DRAGON: Galprop, Ferriere

in DRAGON 3D we can also account for spiral arms

Rigidity dependence

$$Q(\mathbf{x}, \rho) = Q_0(\mathbf{x}) \left(\frac{\rho}{\rho_0}\right)^{-\gamma}$$

we allow for several spectral breaks (3 in the present version)

Diffusion equation

Particle flux, 1-dim.
$$J = nv - D\frac{\partial n}{\partial x_i}$$
 \Longrightarrow 3-dim. $J_i = nv_i - \sum_{j=1}^3 D_{ij} \frac{\partial n}{\partial x_i}$
Particle number conservation \Longrightarrow $\frac{\partial n}{\partial t} = -\frac{\partial J_i}{\partial x_i}$
 $\frac{\partial n}{\partial t} + \frac{\partial}{\partial x_i} (nv_i) + \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial n}{\partial x_j} \right) = q(\vec{x}, t)$ $q(\vec{x}, t)$: source term

In the presence of a regular magnetic field one expects isotropy to be broken and

$$D_{ij}(\vec{x}) = (D_{\parallel}(\vec{x}) - D_{\perp}(\vec{x}))b_i(\vec{x})b_j(\vec{x}) + D_{\perp}(\vec{x}) \ \delta_{ij}$$
 : diffusion tensor

 $b_i(\vec{x})$: regular magnetic field versor

$$[D_{ij}] = : \text{lenght}^2 / \text{time}$$

Diffusion equation

for uniform and isotropic diffusion $D_{ij}(\mathbf{x}) = D \, \delta_{ij}$

and a bursting source $q(E, \vec{x}, t) = q(E)\delta(\vec{x}; t)$

$$N(E, r, t) = \frac{q(E)}{\pi^{3/2} R_{\text{diff}}^3} \exp\left(-\frac{r^2}{R_{\text{diff}}^2}\right)$$

 $R_{\text{diff}}(t) = 2\sqrt{Dt}$: diffusion length

$$t_{\rm diff}(L) \simeq \frac{L^2}{D}$$

: diffusion time on a length L

smaller/larger $D \Rightarrow$ slower/faster diffusion out of the source region

Diffusion coefficient

Here we assume isotropic diffusion

note that for azimuthal symmetry only one component $(D\perp)$ is relevant anyhow

We assume $D(\mathbf{x}, \rho) = D_0(\mathbf{x}) (\rho/\rho_0)^{\delta}$

where $\rho = \rho/Ze$: magnetic rigidity

At low energy dissipation of MHD turbulence may come in (see e.g. Ptuskin et al. ApJ 2006; Evoli & Yan 2013) giving rise to faster CR escape

This is often parametrized introducing

 $D(\mathbf{x}, \rho) = D_o(\mathbf{x}) (\rho/\rho_0)^{\delta} \beta^{\eta}$

where $\eta < 0$ $\beta = v/c$

Nuclei losses

11

Nuclei losses

Castellina & Donato 2005

above ~ 100 GeV/n energy losses become energy independent (other effect are also negligible at those energies, see below), hence CR spectra are determined by diffusion. Hence from a simple leaky box model

Fig. 4. Ratio of calculated carbon fluxes from the same propagation model, where nuclear destructions have been turned off at the denominator.

for primary nuclei spectra

$$N_i(E) \equiv \frac{dN_i}{dE} \propto Q_i(E) \ \tau_{\rm esc}(E) \propto E^{-(\alpha_i + \delta_i)}$$

for primary/secondary ratio

$$\frac{N_p(E)}{N_s(E)} \propto E^{-\delta}$$

Reacceleration and convection

• <u>Reacceleration</u>

due to stochastic scattering onto MHD waves (Fermi 2nd order acc.) For a given detection energy it increases the residence time respect to the no reaccelerating case (more secondaries)

in the quasi-linear theory $D_{pp} = p^2 V_A^2 / (9 D)$ $V_A = B^2 / (4\pi \rho_{plasma}) \simeq 10 \text{ km}^2 / \text{s}$ in the ISM (large uncertainty) Berezinsky et al. 1990, Schlickeiser 2002

<u>Convection</u>

$$\frac{dE}{dt} = -\frac{2}{3} \frac{nV}{N} E(\boldsymbol{\nabla} \cdot \boldsymbol{v}) = -\frac{2}{3} (\boldsymbol{\nabla} \cdot \boldsymbol{v}) E$$

evidence of winds are observed with speed as high as 100 km/s They should transport and induce adiabatic cooling of low energy CR Take in mind that V_C may also depend on R

Solar modulation

Solar modulation (force field approximation)

Gleeson & Axforfd 1968

$$J(E_k, Z, A) = \frac{(E_k + m)^2 - m^2}{\left(E_k + m + \frac{Z|e|}{A}\Phi\right)^2 - m^2} J_{\text{LIS}}(E_k + \frac{Z|e|}{A}\Phi, Z, A)$$

modulated spectrum

DRAGON output

Diffusion parameters from secondary-primary ratio

J.A. Simpson, Ann. Rev. Nucl. Part. Sci. 33 (1983) 323

In order to reproduce the measured abundances of stable nuclei, CRs should have traversed: ~**10 g cm²** of material:

Primary species are present in sources (CNO, Fe). Produced by stellar nucleosynthesis. Acceleration in SN shocks ($\geq 10^4$ yr).

Secondary species are absent of sources (LiBeB, SubFe). Produced during propagation of primaries.

Plain diffusion - uniform D

0.40

 10^{2}

 10^{3}

D - *L* are **almost** degenerate 0.35 (for spherical symmetry $\tau_{esc} \propto \frac{R^2}{D}$) 0.30 0.25 B/C 0.20 In the plot $D_0/L = 0.675 =$ **const** 0.150.10where D_0 is in units of 10²⁸ cm²/s and 0.05of kpc $\Phi = 0 \text{ GV}$ PAMELA 0.00 10^{-1} 10^{0} 10^{1} good degeneracy only for low L ! E_k [GeV/nuc] $(Z_{max} = 14$ is enough for modeling B/C) L = 1 kpcL = 2 kpcL = 4 kpcfor the models in the plot $\delta = 0.6, v_A = 0, v_{C} = 0, \eta = 1;$ dimensions = 2 L = 6 kpc $\Phi = 0$ L = 8 kpc

Plain diffusion - uniform D

Plain diffusion - uniform D

The effect of reacceleration

Generally this is parametrized in terms of V_A entering in D_{pp}

increasing V_A, particles detected at a given E have spent some time at lower energy, hence they had a larger residence time with respect to the case with $V_A = 0 \rightarrow$ more secondaries !

When changing V_A , D_0 has to be rescaled to reproduce the B/C above 10 GeV/n (above that energy the effects of reacceleration are negligible for realistic V_A)

for the models in the following plots

D(z) <u>exponential;</u>

The effect of reacceleration

when increasing V_A the diffusion coefficient rigidity dependence (δ) has to be changed !

note that the source spectral index has to be changed so to leave $\alpha_i + \delta$ constant

in the literature high values of V_{A} were introduced to match the B/C below 1 GeV/n

a_i : source spectral index of nuclei

The effect of reacceleration (proton spectrum)

when increasing V_A the diffusion coefficient rigidity dependence (δ) has to be changed $\, !$

note that the source spectral index has to be change so to leave $\alpha_i + \delta$ constant

in the literature high values of V_{A} were introduced to match the B/C below 1 GeV/n

large V_A result in more peaked spectra at about 1 GeV/n

The effect of reacceleration (proton spectrum)

 $\delta = 0.6 \quad V_A = 0 \text{ km/s} \quad D_0 = 2.6 \quad \Phi = 0.4 \text{ GV}$ $\delta = 0.6 \quad V_A = 10 \text{ km/s} \quad D_0 = 2.8 \quad \Phi = 0.45 \text{ GV}$ $\delta = 0.5 \quad V_A = 20 \text{ km/s} \quad D_0 = 3.5 \quad \Phi = 0.60 \text{ GV}$ $\delta = 0.33 \quad V_A = 30 \text{ km/s} \quad D_0 = 5.0 \quad \Phi = 0.65 \text{ GV}$

The effect of reacceleration (proton spectrum)

$$\begin{split} \delta &= 0.6 \quad V_A = 0 \text{ km/s} \quad D_0 = 2.6 \quad \Phi = 0.35 \text{ GV} \quad \alpha = 2.2 \\ \delta &= 0.6 \quad V_A = 10 \text{ km/s} \quad D_0 = 2.8 \quad \Phi = 0.35 \text{ GV} \quad \alpha = 2.2 \\ \delta &= 0.5 \quad V_A = 20 \text{ km/s} \quad D_0 = 3.5 \quad \Phi = 0.35 \text{ GV} \quad \alpha = 2.0/2.3 \quad \text{b/a 11 GeV} \\ \delta &= 0.33 \quad V_A = 30 \text{ km/s} \quad D_0 = 5.0 \quad \Phi = 0.35 \text{ GV} \quad \alpha = 2.1/2.45 \text{ b/a 11 GeV} \end{split}$$

The effect of changing D(E) at low energy

25

This may be parameterized in the form

 $D(\rho) = D_0 \ \beta^{\eta} \ \left(\frac{\rho}{\rho_o}\right)^{\epsilon}$

The effect may help to reproduce the B/C below 1 GeV for low reacceleration models

the effect on the proton spectrum is small and almost degenerate with solar modulation

models in the plots $\boldsymbol{\delta} = \boldsymbol{0.6}, v_{C} = 0; D_0 = 2.6 z_t = 4 \text{ kpc}$

The effects of convection

We assume $V_c = 0$ at z = 0 and it grows specularly with z with constant dV_c/dz

The effect is negligible above ~ 20 GeV/n

 D_0 has to be rescaled when changing dV_c/dz

 $dV_c/dz = 0 \text{ km/s/kpc}$

 $dV_c/dz = 5 \text{ km/s/kpc}$ $D_0 = 2.4$

 $dV_c/dz = 10 \text{ km/s/kpc}$ $D_0 = 2.2$

 $dV_c/dz = 20 \text{ km/s/kpc}$ $D_0 = 1.8$

for all models in these plots

δ = 0.6, V_{A =} 0; z_t = 4 kpc

E [GeV]

26

 $D_0 = 2.6$

The effects of convection

proton data can hardly be matched lowering the modulation potential and only for small values of dV_c/dz

 $dV_c/dz = 0 \text{ km/s/kpc}$ $D_0 = 2.6 \Phi = 0.4 \text{ GV}$ $dV_c/dz = 5 \text{ km/s/kpc}$ $D_0 = 2.4 \Phi = 0.3 \text{ GV}$ $dV_c/dz = 10 \text{ km/s/kpc}$ $D_0 = 2.2 \Phi = 0.23 \text{ GV}$ $dV_c/dz = 20 \text{ km/s/kpc}$ $D_0 = 1.8 \Phi = 0.15 \text{ GV}$!!

for all models in these plots $\boldsymbol{\delta} = \boldsymbol{0.6}, V_{A=} 0; z_t = 4 \text{ kpc}$

The CR spatial distribution (Constant vs Exp)

The "fantastic" four

The "fantastic" four

which one is ?

The "fantastic" four

(Note that $Z_{max} > 32$ for correctly modeling sub Fe/Fe sub Fe = Sc + V + Ti)

Cosmic rays in 3D

for the models in the plot
$$\boldsymbol{\delta} = \boldsymbol{0.6}$$
, L = 4 kpc , V_A = V_C = 0, $\eta = 1$; $D_0 = 2.6$ D(z) exponential;

Where the primary and secondary CR reaching the Earth are produced ?

 $z_t = 4 \text{ kpc}$

Where the primary and secondary CR reaching the Earth are produced?

Where the primary and secondary CR reaching the Earth are produced?

the ¹⁰Be is produce almost locally, hence it is almost independent on R_{cut}, while ⁹Be decreases increasing R_{cut} up to z_t

Short summary

- D and L are almost degenerate. The value of L does not affect the secondary/primary ratios (after D rescaling). When relevant (e.g. for DM) L should be determined from other measurments.
- strong reacceleration need string (ad hoc ?) breaks in the source spectral index
- Iow reacceleration models may need a change in the low energy dependence of D (modulation may also do the job)
- exponential D(z) give more physically reasonable CR profiles, still this is not necessary for what concerns only nuclei

Electrons and positrons

e[±] energy losses and transport equation

$$\frac{d}{dt}N_{e}(E) = D(E)\nabla^{2}N_{e} + \frac{\partial}{\partial N}(b(E)N_{e}(E)) + Q(E)$$
above 1 GeV
$$b = -\frac{dE}{dt} = \beta E^{2} = \frac{4}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \rho_{rad}\right)E^{2}$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \right)$$

$$f = \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{2}} + \frac{1}{3} \frac{\sigma_{\tau} c}{(m c^{2})^{2}} \left(\frac{B}{8\pi^{$$

below 0.1 GeV

$$\tau_{loss}^{ion} = \left(-\frac{1}{E}\frac{dE}{dt}\right)^{-1} = 10^8 \left(\frac{E}{1 \text{ GeV}}\right) \left(\frac{n_{gas}}{1 \text{ cm}^{-3}}\right)^{-1} \text{ yr}$$

ionization losses

 $\tau_{loss} (1 \text{ GeV}) \sim 10^8 \text{ yr}; \quad \tau_{loss} (100 \text{ GeV}) \sim 10^6 \text{ yr}$

The effects of energy losses

Bulanov & Dogel 74, Berezinsky et al. 1990

Diffusive loss length

$$\lambda_{\text{loss}}(E) = \left(\int_0^{\tau_{\text{loss}}(E)} D(E')dE'\right)^2 = \left(\int_0^E \frac{D(E')}{b(E')}dE'\right)^2$$

This has to be compared with the halo scale height Z_t

 λ_{loss} become smaller than Z_t for

$$E > E_* \simeq \frac{10}{1 - \delta} \left(\frac{D_0}{10^{28} \text{ cm}^2/\text{s}} \right) \left(\frac{z_t}{1 \text{ kpc}} \right)^{-2} \text{ GeV}$$

this few GeV for the models considered.

Electrons do not escape the disk ($Z_d \sim 100 \text{ pc}$) only above several TeV.

Note that $Z_d \simeq$ mean separation between SNRs

The effect of energy losses (no arms case)

The effect of energy losses (source stochasticity)

Above/near the TeV only a few prominent sources may contribute to the e∓ flux reaching the Earth

therefore above/near that energy to assume a continuous source distribution may be inadequate !

This is assuming that *e*⁺ are only secondary products of CR interaction with the ISM

In this plots the e^{-} source spectral index is

α(*e*) = 1.6/2.3 a/b 4 GeV

plain diffusion model which match light nuclei with L = 4 kpc

total modulated e^- - - -total unmodulated e^- secondary e^- secondary e^- secondary = total e^+

 $\Phi = 0.4 \text{ GV}$

This is assuming that *e*⁺ are only secondary products of CR interaction with the ISM

In this plots the e^{-} source spectral index is

α(*e*) = 1.6/2.5 a/b 4 GeV

plain diffusion model which match light nuclei with L = 4 kpc

 $\Phi = 0.4 \text{ GV}$

for several propagation setups

This is assuming that *e*⁺ are only secondary products of CR interaction with the ISM

Propagation setups in this plots PD4 $(\alpha(e^{-}) = 1.6/2.65)$ KRA4 $(\alpha(e^{-}) = 1.6/2.65)$

- KOL4 $(\alpha(e^{-}) = 1.6/2.65)$
- **CONV4** (α (e⁻) = 1.6/2.7)

total modulated *e⁻* total unmodulated *e⁻* secondary mod. *e⁻*

- secondary = total e^+

(for all these models Exp profile for D with $z_t = 4 \text{ kpc}$)

PAMELA anomaly is independent on the choice of the propagation setup !

the effect of changing the halo height

This is assuming that *e*⁺ are only secondary products of CR interaction with the ISM

Propagation setups in this plots

PD2 PD4 PD6 PD8

> total modulated e^{-} total unmodulated e^{-} secondary mod. e^{-} secondary = total e^{+}

(for all these models Exp profile match B/C)

The extra component paradigm

PAMELA 2011 [e⁻¹ This is assuming a charge PAMELA 2013 [e⁺ 10^{3} symmetric e[±] extra component E^3 J(E)[GeV² m⁻² s⁻¹ sr⁻¹] with a continuos source 10^{2} distribution tracing SNR (pulsar) (no arms) and source spectrum $J(e^{\pm}) \propto E^{-\alpha_{\text{extra}}} \exp\left(-E/E_{\text{cut}}\right)$ 10° $\alpha_{\text{extra}} = 1.7$ E_{cut} = 1 TeV here 10^{3} 10^{1} 10^{4} 10^{2} E [GeV] $\Phi = 0.4 \text{ GV}$ **PAMELA 2013 AMS 02** total modulated *e* total unmodulated e⁻ $e^{+}/(e^{-} + e^{+})]$ 10^{-1} secondary e^{\pm} e ± extra component 10^{0} 10^{1} 10^{2} 46 E [GeV]

The effect of spiral arms

Star formation take place mainly in spiral arms

distance between arms ≈ 1 kpc

we are in a low density region between two arms

arms make the difference !10 GeV100 GeV1 TeV

Arms make the difference ! (radial profile)

The effect of the spiral arms on the lepton spectra

50

- Energy losses in the inter-arm region change dramatically the e⁻ and e⁺ spectra above 20 GeV
- the effect is almost absent in the positron fraction (PAMELA pf and FERMI e⁻ + e⁺ were reproduced in 2D)
- even if the extra-component is due to DM (not affected by arms), the e⁻ background computed in 2D is unrealistic

3 (almost) good models in 3D

The possible effect of nearby sources

So far we modeled local source contributions adding to DRAGON output the analytical solution of diffusion/loss equation (using the same parameters we have in DRAGON in the local region).

This is done with IDL/Python routines

In these figures: Vela SNR, d = 300 pc, T = 10^4 yrs $\gamma_{SNR}(e^-) = 2.4$ $E_{cut}(SNR) = 5$ TeV $E_{SNR}(e^-) = 2 \cdot 10^{48}$ erg

The possible effect of nearby sources

So far we modeled local source contributions adding to DRAGON output the analytical solution of diffusion/loss equation (using the same parameters we have in DRAGON in the local region).

This is done with IDL/Python routine

In these figures: Vela SNR +

Monogem pulsar d = 280 pc, T = 10^5 yrs **Geminga pulsar** d = 160 pc, T = $3 \ 10^5$ yrs

for both we assume 15% e[±] conversion effic.

$$\Upsilon_{\text{pulsars}}(e^{\pm}) = 1.9$$
 E_{cut} = 1 TeV

