An introduction to Ultra-High Energy Cosmic Rays

Daniel Kuempel RWTH Aachen University / Germany

CASPAR2014 Codes in Astroparticle Research September 2014 - DESY - Hamburg

Allianz für Astroteilchenphysik

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Ultra-high energy cosmic rays

Definition wikipedia:

In astroparticle physics, an **ultrahigh-energy cosmic ray** (**UHECR**) is a cosmic ray particle with a kinetic energy greater than 10¹⁸ eV, far beyond both its rest mass and energies typical of other cosmic ray particles.

Let's have a closer look...

It was August 7 1912 - 6am ...

Victor Franz Hess

Victor Franz Hess:

How fast does an electroscope discharge when we leave the surface of the Earth?

Expectation:

Discharge should decrease for increasing altitude **Observation**:

After a specific height discharge increases!!

Ballon of Franz Victor Hess

Hess after landing

Conclusion:

This radiation is not from Earth, it's from space!

24 years later he receives the Nobel price for the discovery of cosmic rays

... the story continues...

Year 1938:

MEASURING COSMIC RAYS IN THE SWISS ALPS The author (*left*) and his collaborator, P. Ehrenfest, set up their apparatus in the Jungfraujoch.

Extensive air showers (EAS)

Pierre Auger

Werner Kolhörster

Observation:

Even at spacings of ~80 m they detect coincidences of particles

Explanation:

These particles are secondary particles from **extensive air showers**!

Daniel Kuempel

Extensive air showers (EAS)

Extensive air showers (EAS)

Why do we care about EAS?

Daniel Kuempel

Primary cosmic rays

Detection of EAS

Two main measurement techniques:

Fluorescence telescope

Water-Cherenkov detector

Primary cosmic rays

Detection of EAS

Two main measurement techniques:

Fluorescence telescope

Water-Cherenkov detector

Primary cosmic rays

Detection of EAS

Two main measurement techniques:

Fluorescence telescope

Water-Cherenkov detector

Pioneering experiment in 1961

John Linsley

First giant air shower array at Vulcano ranch / USA

- 19 plastic scintillation counters
- total 8.1 km² area

Linsley (checking for rattlesnakes)

- First measurement of energy spectrum above 10¹⁸ eV
- First observation of 10²⁰ eV air shower
- Extragalactic origin likely!

Wilson

Penzias

Daniel Kuempel

Haverah Park, UK 1962 - 1987

Using water-Cherenkov tanks

Water Cherenkov tank inside

Water Cherenkov tank inside

Haverah Park, UK 1962-87

Haverah Park, UK 1962 - 1987

Using water-Cherenkov tanks

Water Cherenkov tank inside

Water Cherenkov tank inside

Haverah Park, UK 1962-87

Fluorescence light

Light originates from transitions from the second positive system (2P) of molecular nitrogen N₂ and the first negative system (1N) of ionized nitrogen molecules.

Fly's Eye experiment, Utah, USA

Utilizing fluorescence light

1981 - 1993

First detection of particle with 3.2 x 10^{20} eV (Bird et al. Astrophys.J. 441 (1995) 144-150) Primary type: Unknown

Daniel Kuempel

Fly's Eye experiment, Utah, USA

Utilizing fluorescence light

1981 - 1993

First detection of particle with 3.2 x 10^{20} eV (Bird et al. Astrophys.J. 441 (1995) 144-150) Primary type: Unknown

Daniel Kuempel

... today: The Pierre Auger Observatory

Dates:

• | 992:

First ideas for a giant extensive air shower experiment by J. Cronin and A.Watson

• 2000:

Start of construction

• Since 2004: Data taking

• **2008**:

Construction complete

Aim: Study ultra-high energy cosmic rays above 10¹⁷ eV

About 500 collaborators from 18 countries

Daniel Kuempel

Pierre Auger Observatory

- About **3000 km²** area
- 1660 water-Cherenkov tanks
- •27 fluorescence telescopes

Additional R&D antennas

Pierre Auger Observatory

Hybrid technique

Advantage:

- More accurate energy and directional information
- Lower energy threshold
- Small dependence on interaction models

Disadvantage:

Only 10-15% duty cycle

Daniel Kuempel

Pierre Auger Observatory

Hybrid technique

Advantage:

- More accurate energy and directional information
- Lower energy threshold
- Small dependence on interaction models

Disadvantage:

Only 10-15% duty cycle

Daniel Kuempel

Geometry reconstruction

1. Determination of the shower

Two step process:

Daniel Kuempel

150

130

140

Geometry reconstruction

Two step process:

2. Determine geometry within SDP Shower Detector Plane Use timing information of pixel! Express expected arrival time t_i at $\tau_{;}^{showe}$ telescope as function of R_p , t_0 and chi₀: $\chi_0 - \chi_i$ $t_i = t_0 - \tau_i^{\text{shower}} + \tau_i^{\text{prop}}$ $t_i = t_0 + \frac{R_p}{c} \tan\left(\frac{\chi_0 - \chi_i}{2}\right)$ FD shower front. χ^2 /Ndf= 89.34/69 420 400 SD information (impact on ground) 380 time [100 ns] 360 Fit R_p , t_0 and chi_0 to 340 determine geometry 320 300 **Angular resolution** 280 typically less than 1° 260 -10 10 20 30 40 0 19 χ angle [deg] **Daniel Kuempel** CASPAR2014

Daniel Kuempel

19

CASPAR2014

Energy reconstruction

Energy determination from profile fit

Auger in operation...

Video by S. Saffi

Auger in operation...

Video by S. Saffi

... and today, more than 100 years after the discovery of cosmic rays?

... still many open questions:

Ultra-high energy cosmic rays (UHECR) E > 10

 Where do they come from?
What are they made of?
How are they accelerated?
What can they tell us about fundamental and particle physics?
Is there a maximal energy? **Birth** supernovae pulsar black hole AGN

...

General picture UHECR

Additional acceleration

shock acceleration (Fermi)

charged particle

Propagation

spallation radioactive decay magnetic fields interactions

Galactic deflection magnetic field interactions

Death cosmic ray air shower

Extra-galactic energy density

Cosmic rays can interact with background photons:

Interactions

Pion production

Pion production for a head-on collision of a nucleon *N*:

$$N + \gamma \to N + \pi$$

with the threshold energy

$$E_{\rm thres} = \frac{m_{\pi}(m_N + m_{\pi}/2)}{2\epsilon} \approx 6.8 \cdot 10^{19} \left(\frac{\epsilon}{10^{-3} \,\,{\rm eV}}\right)^{-1} \,{\rm eV}$$

where $\epsilon \sim 10^{-3} \ {\rm eV}$ represents a typical target photon such as a CMB photon. Both the electromagnetic and the strong interaction play a role. **Example**: Pion production by protons via delta resonance:

 $\begin{array}{ccc} \mathsf{EM} & \mathsf{strong} & & & & \\ \mathsf{interaction} & & & \mathsf{interaction} & & & & & \\ \mathsf{p} + \gamma \to \Delta^+ & & \\ p + \pi_0 & & & \\ \end{array} \begin{array}{c} n + \pi^+ & & \\ \mathsf{with} \ \mathsf{branching} \ \mathsf{ratio} \ 1/3 & \\ p + \pi_0 & & \\ \end{array} \begin{array}{c} \mathsf{with} \ \mathsf{branching} \ \mathsf{ratio} \ 2/3 & \\ & & \\ \mathsf{photons} \ \mathsf{by} \ \mathsf{hadronic} \ \mathsf{cosmic} \ \mathsf{rays} \end{array}$

After the discovery of the CMB (1965) people realized:

Universe gets opaque for cosmic rays at ultra-high energies: GZK-effect

first realized by Greisen, Zatsepin and Kuzmin in 1966

K. Greisen, PRL 16 748 (1966), G.T. Zatsepin and V.A. Kuzmin Sov. Phys. JETP Lett. 4 78 (1966)

Daniel Kuempel

IRB (Kneiske 2004)

Frequency [Hz]

Interactions

Pair production

Pair production by a nucleus with mass number A and charge Z on a photon: $\begin{array}{c} A \\ Z \end{array} + \gamma \rightarrow \begin{array}{c} A \\ Z \end{array} + e^+ + e^- \end{array}$

induces electromagnetic cascades via inverse Compton scattering

with the threshold energy

$$E_{\rm thres} = \frac{m_e(m+m_e)}{\epsilon} \approx 4.8 \cdot 10^{17} \ A \ \left(\frac{\epsilon}{10^{-3} \ \rm eV}\right)^{-1} \rm eV$$

where $\epsilon \sim 10^{-3} \text{ eV}$ represents a typical target photon such as a CMB photon.

Interactions

Pair production

Pair production by a nucleus with mass number A and charge Z on a photon: $\begin{array}{c} A \\ Z \end{array} + \gamma \rightarrow \begin{array}{c} A \\ Z \end{array} + e^+ + e^- \end{array}$ induces

induces electromagnetic cascades via inverse Compton scattering

with the threshold energy

$$E_{\rm thres} = \frac{m_e(m+m_e)}{\epsilon} \approx 4.8 \cdot 10^{17} \ A \ \left(\frac{\epsilon}{10^{-3} \ {\rm eV}}\right)^{-1} {\rm eV}$$

where $\epsilon \sim 10^{-3} \text{ eV}$ represents a typical target photon such as a CMB photon.

Photodisintegration of nuclei

Gamma ray is absorbed by nuclei and causes it to enter excited state before splitting in two parts.

Changes in energy ΔE , and atomic number ΔA , are related by $\Delta E/E = \Delta A/A$ Thus, effective energy loss rate is given by:

$$\frac{1}{E} \left. \frac{\mathrm{d}E}{\mathrm{d}t} \right|_{\mathrm{eff}} = \frac{1}{A} \frac{\mathrm{d}A}{\mathrm{d}t} = \sum_{i} \frac{i}{A} l_{A,i}(E)$$

Daniel Kuempel

CASPAR2014

rate for emission of *i*

nucleons of mass A

Interaction rate

Interaction rate can be calculated as

Daniel Kuempel
Attenuation length for protons

10⁹

D. Allard, Astropart. Phys. 39-40 (2012) 33-43

Energy loss rate for Carbon-12

- Low energies: energy loss dominated by expansion of the universe
- Intermediate energies: Most important energy loss is photodisintegration
- High energies:
 Pion production on CMB

Secondary photons

CASPAR2014

Extragalactic magnetic fields

- Some words of caution: Extragalactic magnetic fields are currently poorly constrained.
- Their origin is not well understood (primordial Universe, magnetic pollution from astrophysical sources, e.g. jets from radio galaxies, ...)
- Typical strength of the field varies:
 - **1-40 μG** with coherence length of about 10 kpc (*clusters of galaxies*)
 - ▶ 10⁻¹⁶ 10⁻⁶ G with coherence length between 1-10 Mpc (*in filaments*)
- Field strength probably related to matter density in this environment

Galactic magnetic fields

- Much progress in recent years
- Models based on Faraday rotation measurements and polarized and unpolarized synchrotron emission
- Concentrate on field from Jannson & Farrar: JF12
 R. Jansson and G. R. Farrar, ApJ 757 (2012) 14
 R. Jansson and G. R. Farrar, ApJL 761 (2012) L11
- Field strength of order micro-Gauss

32

Key results anisotropy

AGN correlation

Daniel Kuempel

CASPAR2014

Daniel Kuempel

CASPAR2014

36

TA hotspot

NATIONAL July 9 2014 GEOGRAPHIC Cosmic-Ray Hotspot Discovered, Offering Clues on Deep A powerful telescope may have found clues to the origin of ultra-high-energy particles that bombard the Earth. Trending Now 01 Q&A: The First-Ever Expedition to Turkmenister's 'Door to Heil' Pirst of its Kind Map Reveals Extent of Why the 67 Glant Shalls Seized in L.A. 04 World Snake Day July 16th DEE DOPPEL-RUKT MIT BES ZU 25.000 KBIT/S WILL JEDER HADEN In this time-lapse photo, stars appear to rotate above Utah's Telescope Array, which astronomers COMMERZBANK DB BAHN

equatorial coordinates

Daniel Kuempel

-60

-30

12

TA hotspot

Let's have a closer look...

- ► E > 5.7 x 10¹⁹ eV (72 events)
- 19/72 events fall in hotspot (RA=146.7, DEC = 43.2°)
- 4.5 events expected
- LiMa significance = 5.2 sigma
- Estimate 3.4 sigma chance probability (4.6 sigma for 6 years TA data)

TA hotspot

- Angular distance between hotspot and super galactic plane 19°
- Ursa supercluster is extended by more than 10° from super galactic plane
- TA can not rule out some relationship between hotspot and this supercluster

Mean deflection for Auger and TA site

Mean galactic deflection

Mean galactic deflection

Key results energy spectrum

Key results - Energy spectrum

Key results - Energy spectrum

- Both experiments see spectral structure:
 - The "ankle" at about 5 x 10¹⁸ eV
 - Flux suppression at highest energies
 - Origin still unclear

Key results composition

Composition observable

Primary cosmic ray

Depth of shower maximum Xmax Daniel Kuempel

Key results - Composition

Auger data shows a smooth change to a heavier composition

TA results are consistent

Daniel Kuempel

CASPAR2014

Key results secondaries

Key results - Neutrinos

Only a neutrino can induce a young horizontal shower!

Daniel Kuempel

CASPAR2014

Key results - Neutrinos

Limits constrain models with proton primaries & strong source evolution

Daniel Kuempel

52

Key results - Photons

Identification:

Photon induced air showers: Two main characteristics: I.Delayed shower development (larger X_{max}) 2.Lack of muons due to smaller photo-nuclear cross-section

Key results - Photons

Idea: Directional search for photon point sources

Measure extensive air showers

- Arrival direction
- Shower characteristics

Idea: Directional search for photon point sources Any point sources visible?

Measure extensive air showers

- Arrival direction
- Shower characteristics

Idea: Directional search for photon point sources Any point sources visible?

Measure extensive air showers

- Arrival direction
- Shower characteristics

Try to reduce background by selecting only photon-like events
Key results - Photons

Average particle flux upper limit: 0.035 photons / km² / yr Average energy flux upper limit: 0.06 eV / cm² / s (energy spectral index -2)

Key results - Neutral particles (from point sources)

Similar to directional photon search but using no photon cut and surface detector information

Absence of neutrons suggests that sources are extragalactic (or transient, or emitting in jets, or optically thin to escaping protons)

Constrain models in which EeV protons are produced by a low density of strong sources in the galaxy

Daniel Kuempel

UHECR - HEP connection

Difficulties:

- \bullet mass composition can alter Λ
- \bullet fluctuations in X_{max}
- experimental resolution ~ 20 g/cm²

$$\sigma_{p-Air} = \frac{\langle m_{Air}}{\lambda_{int}}$$

In practice: σ_{p-Air} by tuning models to describe Λ seen in data

Daniel Kuempel

Daniel Kuempel

UHECR today: multiparameter challenge

Multiparameter challenge

Aim: Constrain / determine astrophysical parameters Challenge: Many unknown/uncertain parameters

CASPAR2014

Daniel Kuempel

Now you come into play

Simulations

Much progress in recent years

Propagation codes

CRPropa R.A. Batista et al. ICRC 2013 https://crpropa.desy.de

SimProp R. Aloisio et al. JCAP 10 007 (2012)

Computing power

Using high statistic experimental data in combination with sophisticated propagation tools and powerful computing clusters we are entering a **new phase of data / MC comparison**

Motivation 3D benchmark scenario

Motivation can be divided into two parts:

I. Physics Motivation:

Simulate a realistic astrophysical scenario and calibrate it to recent observations including:

- → 3D simulation
- ➡ Nuclei implementation
- ➡ Galactic and extragalactic propagation
- Sources according to large-scale structure
- Extragalactic and galactic magnetic fields

2. Also community Motivation:

Provide a common scenario for collaborators

- Test observables (e.g. anisotropy sensitive parameters)
- Benchmark observables for an easy (and standardized) comparison

Simulation details

Sources:

- Randomly distributed according to large scale structure
- ➡ Minimum distance of 3 Mpc
- Isotropic emission
- Composition according to (galactic composition, DuVernois et al. 1996)

$$\frac{\mathrm{d}N_i}{\mathrm{d}E} \propto x_i A_i^{\alpha - 1} E^{-\alpha}$$

 x_i : relative abundance A_i : mass number α : spectral index = 2.0

67

➡ Abundances for Z > 2 scaled by factor k_c=10
➡ Maximum energy of each element is rigidity dependent:
E_{max} = Z_i R_{max}, with R_{max} = 150 EeV

➡ Source density: 10⁻⁴ Mpc⁻³

Simulation details Extragalactic magnetic field:

Simulation details Extragalactic magnetic field:

• Periodically repeated turbulent field grid -6.6 • Small grid size -7.2• High resolution (50 kpc) -7.820 G -8.4 y [Mpc] $\log_{10}(|B|$ 0 -9.0 -9.6-20-10.2-40 -10.8• Large scale structure -11.4• Large grid size -60 • Low resolution (500 kpc) 20 40 60 -60 -40 -200 x [Mpc]

Magnetic field direction given by multiplying turbulent field grid and large scale structure

Comparison with Auger spectrum

Arrival directions:

Composition measurements

Deviation from measurements

Better model needed

Composition measurements

Many other papers on this subject

Astroparticle Physics 39-40 (2012) 33-43

Astroparticle Physics

journal homepage: www.elsevier.com/locate/astropart

q

Extragalactic propagation of ultrahigh energy cosmic-rays

Denis Allard

Laboratoire Astroparticule et Cosmologie (APC), Université Paris 7/CNRS, 10 rue A. Domon et L. Duquet, 75205 Paris Cedex 13, France

Astroparticle Physics 33 (2010) 151–159 **Astroparticle Physics**

journal homepage: www.elsevier.com/locate/astropart

On the heavy chemical composition of the ultra-high energy cosmic rays Dan Hooper^{a,b}, Andrew M. Taylor^{c,d,*}

Frontiers of Physics December 2013, Volume 8, Issue 6, pp 748-758

Cosmic ray energy spectrum from measurements of air shower

T. K. Gaisse

Astroparticle Physics 54, 48 (2014)

Astroparticle Physics

journal homepage: www.elsevier.com/locate/astropart

UHECR composition models

Andrew M. Taylor Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland

84, 105007 (2011) Need for a local source of ultrahigh-energy cosmic-ray nuclei Andrew M. Taylor, ¹ Markus Ahlers, ² and Felix A. Aharonian^{3,4}

Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition Subm. to JCAP 2013

Bottom line:

- Typically these papers only use spectrum and composition observables
- Hard source spectral index needed, unless nearby source
- (additional component) is assumed
- Too early to draw decisive conclusions (large parameter space and big uncertainties)

Multi-messenger approach

IceCube PeV neutrino events from extragalactic UHECRs?

Conclusion I

- Even more than 100 years after the discovery of cosmic rays many questions at ultra-high energies are still unanswered.
- Current large-scale observatories offer a unique opportunity to tackle these questions
- Major achievements in recent years:
 - Clear observation of flux suppression
 - Strongest bounds on EeV neutrinos and photons
 - Strongest bounds on large-scale anisotropies
 - First hints on correlations with nearby matter
 - Increasing heavier composition (Auger) or continuously light (TA)?
 - Proton-proton cross section at very high energy

Conclusion II

- Propagation of UHECRs plays an important role constraining astrophysical parameters
- Modern simulation tools enable ID and 3D simulations in structured (extra)galactic environments including secondaries
- Too early to draw decisive conclusions on astrophysical parameters Use more observables and experimental data

10¹⁹

Fermi I AT

Secondaries as messengers may further constrain astrophysical parameters, e.g. by comparing with TeV observations

E [eV]

FIGA

Now it's up to you!

... the future is bright