DRAGON code.-> download()r “59
DRAGON code--> run(); = ,;_‘ »7¥T?ﬁ
DRAGON Gode -> plot(), 'ﬁf;g;%jjﬁE,

b A M i | Damele Gaggero’ e
CASPAR s Codes in il SISSA Trienta™s %
AStI’OPAI'thle Research 2014 g i S . danle]_e gaggero@Slssa lt
DESY Hamburg Cepaaan s B e T
September 15¢h, 2014 - -1 e s B

. 1->Downloading DRAGON " .

DRAGON can be downloaded from

." - http://www.dragonproject.org/Download.html

o ' The following libraries are required:

" = GSL (http://www.gnu.org/software/gsl/)

. - cfistio (http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html)

2 - A note on CFITSIO: when you unpack the routine, do
- $§ ./confiqures=prefix=path you prefer
- $ make

S make install

~and make sure that in path_you_prefer the library (Libefitsio.a) is correcly placed in
~1ib/ and the header files (* . h) are located in include/

http://www.dragonproject.org/Download.html

- 7 2->Installing DRAGON : S e

s 1) Before installing the code launch the script to initialize installation tools:

~'$./start.sh

" —=’'a note for MAC users: you may need to edit start.sh and put “glibtoolize” instead of

slibtoolize”
- 2) Configure the code, a typical command line is:
$./configure --with-cfitsio=$CFITSIO DIR --with-numcpu=NUMCPU

- where “$CFITSIO DIR” is the path of your cfitsio library and “NUMCPU” is the machine core
number.

-';; 3) Finally create the executable:

'ﬁls make

3 -> Preparing the xml

I will now explain how to set all the relevant parameters for a DRAGON run,;
the parameters for the run must be coded in a single XML file.
There are several sample files provided with the code. Let's see all the blocks one by one.

1. The “Output” block

<Output>

<partialstore /> <!--if present, the code writes the spectrum at Sun position for each species on a
FITS file -->

<fullstore /> <!-- if present, the code writes the complete (r,z,p) grid of propagated particles for
each species on a FITS file; the complete file can be quite large (10-100 MB), depending of the resolution and number of
species -->

<feedback value="2" />
<!-- 0 = no output on screen: ideal for a long set of well tested runs

2 > a lot of output on screen: ideal for debugging -->
</Output>

3 -> Preparing the xml

I will now explain how to set all the relevant parameters for a DRAGON run;
the parameters for the run must be coded in a single XML file.
There are several sample files provided with the code. Let's see all the blocks one by one.

2. The “Grid” block

<Grid type="2D"> <!-- Number of spatial dimensions. Options: 2D, 3D -->

<Observer> <!-- Position of the Solar System; values are in kpc; the FITS with the spectrum will refer to these

coordinates -->
<x value="8.3" />
<y value="0.0" />
<z value="0.0" />
</Observer>

<Rmax value="12" /> <!-- Maximum value of Galacto/centric radius (R) in kpc -->
<L value="4" /> <!-- Halo size in kpc. The Galaxy extends from -L to L -->
<DimR value="41" /> <!-- Number of grid points along R -->

<DimZ value="81" /> <!-- Number of grid points along vertical axis -->

<Ekmin value=".1" /> <!-- Minimum Kkinetic energy of propagated particles in GeV -->
<Ekmax value="1000." /> <!-- Maximum Kkinetic energy of propagated particles in GeV -->

<Ekfactor value="1.2" />
<!-- Logarithmic spacing of energy grid. E[i] = exp(In(Ekmin) + i In(Ekfactor));
values closer to 1 result in a more refined grid!
1.2 is a standard values for runs with little of no reacceleration;
for runs with large values of v_Alfvén we recommend more refined energy grids, in order to follow the evolution in
momentum space at low energies with more accuracies: values around 1.1 or less should be used
-->

3 -> Preparing the xml

I will now explain how to set all the relevant parameters for a DRAGON run;
the parameters for the run must be coded in a single XML file.
There are several sample files provided with the code. Let's see all the blocks one by one.

2. The “Grid” block - continued

<NuclearChain>

<Zmax value="14" />
<!-- Maximum atomic number of propagated particles;
if one wants to focus on leptonic species, it is enough to propagate from He (Zmax = 2);
instead, if one wants to compute the B/C ratio it is recommended to start the chain from Silicon in
order to get a precision O(1%);
starting from a much heavier nucleus is useless and the corresponding run will take a long time to
finish!!!

e

<Zmin value="1" /> <!-- Minimum atomic number of propagated particles -->

<PropLepton /> <!-- if present, the code propagates leptonic species (optional) -->

<PropExtraComponent /> <!--if present, the code propagates a primary extra component of leptons
with a different slope and normalization with respect to the conventional primary electron component (optional) -->

</NuclearChain>

K /Grid>

3 -> Preparing the xml

I will now explain how to set all the relevant parameters for a DRAGON run;
the parameters for the run must be coded in a single XML file.
There are several sample files provided with the code. Let's see all the blocks one by one.

3. The “Algorithm” box

these values may change a lot the performance of the code and more refined values may slow down the run a lot!

<Algorithm>
<OpSplit> <!-- The code starts with dt = Dtmax; after Nrept iterations, the code rescales dt by the factor
Dtfactor; this process is iterated until Dtmin is reached -->

<Nrept value="30" /> <!-- Number of iterations before changing timestep. 30 is a
standard values for runs with little of no reacceleration; for runs with large values of v_Alfvén we recommend larger
values, around 60 - 80 -->

<Dtfactor value=".25" /> <!-- Rescaling factor of the time step -->
<Dtmin value="0.001" /> <!-- Minimum time step in Myr -->
<Dtmax value="64." /> <!-- Maximum time step in Myr -->
</OpSplit>
</Algorithm>

3 -> Preparing the xml

I will now explain how to set all the relevant parameters for a DRAGON run;
the parameters for the run must be coded in a single XML file.
There are several sample files provided with the code. Let's see all the blocks one by one.

4, The “Galaxy” box

<Galaxy>

<Gas type="Galprop" />
<!-- Gas model; options: BronfFerr, NS, Galprop, Uniform -->
<SNR type="Ferriere" />
<!-- Source distribution for the primary components; options: Lorimer, Galprop, Ferriere, OneRing, Rings -->
<SNR_Extra type="Ferriere" />
<!-- Source distribution for the extra component; options: the same as SNRType (optional) -->
<XCOmode type="SM96" /> <!-- Model for the X_CO factor; options: SM96, galprop_2004, galprop_2010,
constant -->

<piffusion type="Constant">
<!-- this is the one of the most important blocks, with the most relevant parameters -->

<!-- type: the spatial distribution of the diffusion coefficient; options: Constant, Exp, Qtau -->
<DO_1le28 value="2.7" />

<!-- Normalization of the diffusion coefficient at reference rigidity DiffRefRig Unit: 10228 cm”2/s -->
<DiffRefRig value = "4" />

<!-- Reference rigidity for the normalization of the diffusion coefficient -->
<Delta value="0.6" />

<!-- Slope of the diffusion coefficient spectrum -->
<zt value="4" />

<!-- Scale heigth of the diffusion coefficient, useful in Exp mode: D(z) \propto exp(z/zt) (optional) -->
<etaT value="1." />

<!-- Low energy correction factor of the diffusion coefficient: D \propto beta”etaT -->
</Diffusion>

3 -> Preparing the xml

I will now explain how to set all the relevant parameters for a DRAGON run;
the parameters for the run must be coded in a single XML file.
There are several sample files provided with the code. Let's see all the blocks one by one.

4, The “Galaxy” box - continued

<Reacceleration type="Ptuskin94"> <!-- Optional block -->
<vA_kms value="0." /> <!-- Alfvén velocity in km/s -->
</Reacceleration>

<CrossSection type="GalpropXSec" leptopt="Kamae" apopt="GalpropFunction" ApCs="2" /> <!--
Model for cross sections. leptopt is the model for electron and positron production; options: Kamae, GalpropTable -->

<MagneticField type="Pshirkov"> <!-- Model for the magnetic field. Options: Pshirkov, Farrar, Uniform,
Toymodel -->
<B0disk value="2.e-06" /> <!-- Useful for Pshirkov field: halo regular field normalization in Gauss

->
<BOhalo value="4.e-06" /> <!-- Useful for Pshirkov field: turbulent regular field normalization in
Gauss -->
<BOturb value="7.5e-06" />
</MagneticField>
</Galaxy>

3 -> Preparing the xml

I will now explain how to set all the relevant parameters for a DRAGON run;
the parameters for the run must be coded in a single XML file.
There are several sample files provided with the code. Let's see all the blocks one by one.

5. The “CR” box

Here we put the normalizations of primary protons, primary electrons, extra component (if present), and the

injection indexes for all these species

<CR>

<ProtNormEn GeV value="100" />

<ElNormEn GeV value="33." />
-->

<ProtNormFlux value="5.e-2" />
DRAGON units: GeVA-1 mA-2 sA-1 srh-1 -->

<ElNormFlux value="0.004" />
units: GeVA-1 mA-2 sA-1 srA-1 -->

<!-- Reference energy for nuclei normalization in GeV -->
<!-- Reference energy for primary electron normalization in GeV

<!-- Proton flux at reference energy for normalization; in

<!-- Electron flux at reference energy for normalization; in DRAGON

<ElNormEnExtra GeV value="300" /> <!-- Reference energy for primary electron extra component

normalization in GeV -->

<ElNormFluxExtra value="1l.e-06"

units: GeVA-1 mA-2 sA-1 srM-1 -->

/> <!-- Extra component flux at reference energy; in DRAGON

3 -> Preparing the xml

I will now explain how to set all the relevant parameters for a DRAGON run;
the parameters for the run must be coded in a single XML file.
There are several sample files provided with the code. Let's see all the blocks one by one.

5. The “CR” box - continued

Here we put the normalizations of primary protons, primary electrons, extra component (if present), and the injection
indexes for all these species

<InjectionIndexAllNuclei> <!-- You can add an arbitrary number of breaks!! -->
<alpha 0 value="2.22" /> <!-- First injection slope for nuclei -->

<rho 0 value="1." /> <!-- Position of first break (rigidity) in GV -->
<alpha 1 value="2.22" /> <!-- Second injection slope for nuclei -->
<rho_1 value="11." /> <!-- Position of second break (rigidity) in GV -->

<alpha_ 2 value="2.22" />
<rho_2 value="111." />
<alpha 3 value="2.22" />
</InjectionIndexAllNuclei>
<InjectionIndexElectrons> <!-- You can add an arbitrary number of breaks!! -->
<rho 0 value="1." /> <!-- Position of first break (rigidity) in GV -->
<rho_1 value="5." />
<rho 2 value="10." />
<alpha 0 value="1.80" /> <!-- First injection slope for electrons -->
<alpha 1 value="1.80" />
<alpha 2 value="2.50" />
<alpha 3 value="2.50" />
<CutoffRigEl value="20000." />
</InjectionIndexElectrons>
<InjectionIndexExtraComponent>
<rho 0 value="1." />
<alpha 0 value="1.85" />
<alpha 1 value="1.85" />
<CutoffRigExtra value="10000." />
</InjectionIndexExtraComponent>

</CR>

3 -> Preparing the xml

I will now explain how to set all the relevant parameters for a DRAGON run;
the parameters for the run must be coded in a single XML file.
There are several sample files provided with the code. Let's see all the blocks one by one.

6. The DM block (optional)

Put some description

<DarkMatter Reaction="Annihilation" Model="SelfTable" Profile="NFW">

<!-- Reaction can be "Annihilation" or "Decay", (spectrum) Model can be "SelfTable" or "Delta", (density) Profile

can be "Iso", "NFW", "Kra", "Moore", "Einasto" -->

computed -->

are computed -->

<PropDMLepton /> <!-- If this flag is specified, leptons originating from DM annihilation/decay are
<PropDMAntiProton /> <!-- Ifthis flag is specified, antiprotons originating from DM annihilation/decay

<Mass value="1000." /> <!-- DM particle mass in GeV -->

<!__ kkhkhhkhkkhkkhkhkhhhkkkikhkhk >

<l-- LifeTime value="le26" --> <!--if Decay is specified, the lifetime in seconds -->

<SigmaV value="2.e-23" /> <!-- if Annihilation is specified, the <sigma v> in cm”3/2 -->

<!__ kkhkkhkkhkkkhkhkhkhhkhkhkhkk >

<SSDensity value="0.41" /> <!-- Dark Matter local energy density in GeV/cm”3 -->

<EkDelta value="1000." /> <!-- if Delta is specified as a spectrum model, this is the energy in

GeV at which particles are injected -->

</DarkMatter>

¢ »-

<LeptonDatafile value="DM/mumu 1000gev_pos.txt" />

<!-- if SelfTable is specified as a spectrum model, this is the file with the inj spectrum in GeVA-1 for leptons -->
<AntiprotonDatafile value="DM/mumu_ 1000gev ap.txt" />

<!-- if SelfTable is specified as a spectrum model, this is the file with the inj spectrum in GeV-1 for pbar -->
<!--Channel value="17" /-->

 4->Running and plotting the output

. Itiseasyto perform a run. Once the xml is ready, just launch DRAGON with the xml as -
parameter:
$./DRAGON examples/run_ 2D.xml

'« The code will produce one or two FITS files, depending on the XML settings.

If the <fullstore> flag is on, you will find in output/run 2D.fits the full dataset:
for each species there is a block in the FITS file with the CR flux matrix as a function of (7, z,

kin. energy)

. If the <partialstore> flagis on, you will find in output/run_2D spectrum.fits
the spectra at Sun position: for each species there is a block in the FITS file with the CR

‘spectrum as a function of the kinetik energy

4> Running and plotting the output

It is easy to perform a run. Once the xml is ready, just launch DRAGON with the xml as
parameter:

$./DRAGON examples/run 2D.xml

A note on DRAGON FITS files (please look in the web if you need a complete documentation of FITS |
format) >

The FITS files permit to store data and metadata in the same file.
The DRAGON fits files are structured as follows:

. *1) a header with the most relevant parameter of the run, e.g. “Emin”, “Emax”, “Rmin”, “Rmax”... .,
these keywords are easily readable with the standard FITS I/O routines with C++, python, IDL ecc.

2) a data unit for each species, with either the spectrum at Sun position or the full matrix.

 4->Running and plotting the output

4 In order to visualize the results, we prepared a set of python routines to do the most
relevant plots.
| For those who are not familiar with python, don't worry, for each type of plot thereisa
full working routine and you just have to do some very basic editing for most stuff you'll
‘need!

4> Running and plotting the output

In order to visualize the results, we prepared a set of python routines to do the most relevant plots.f_a--'f-"_'

. Each routine permits to visualize an observable; it is possible to compare an arbitrary number of
runs, and for every run it's possible to alter the normalization, modulate with a force-field potential and '
choose the color. Here is an example:

plot protons.py

#/***

FILENAMES

#/***

Input Folder = os.path.join(os.environ['HOME'], "python', 'runs"')

Output Folder = os.path.join(os.environ['HOME'], 'python’', 'plots"')

Data Folder = os.pathujoin(os.environ['"HOME'], 'python', 'data"')

Run. Name's . =gS@l=lT == wmrin = 2%]

Number of Runs ‘= len(Run.Names) .

File Names = .[]
for i in range(Number of Runs):
File Names.append(input Folder + '/' # Run Names{i] + ' spectrum.fits:gz’)

norm = [1gN5-"1'.0 # normalization factor
phi’: =g iies0%: 0.550] # modulation potential
¢colors ="['red', 'blue’]

L _‘_I-_. ¥ . SR A - 5 ! : e - 2 : i »

.. -5 Introductory exercise <= .

' Run a sample XML and plot the proton spectrum

~ 1) run the code with this sample file:
-'$./DRAGON examples/run 2D simple.xml

- 2) check that the output file has been created correctly

~ 3) edit the python routine plots/plot protons simple.py plugging the path and name

~ of the run

~4) run the python plotting routine — just edit it in order to put the correct path
and the correct name of the run and you're ready to plot the proton spectrum, with and
without solar modulation (the mod. potential is set to 0.52 GV)

. .$ cd plots
- $ python plot protons simple.py

- == Introductory exercise <--= i

-

* . Run a sample XML and plot the proton spectrum

- --> this is what you should get:

PAMELA 2009

+-—->First exercise<--

3 A referencé 2D ruh in which CR nuclei and leptons are propagated

“examples/run 2D.xml“

<?xml version

<!-- The code writes the spectrum at 5un position for each species on a FITS file
(optional) --=
:fullstore /> <!-- The code writes the complete (r,z,p) grid of propagated particles for each
species on a FITS file (optional) --=
<feedback valu -
=/0utput=
G p <!-- Number of spatial dimensions. Options: 20, 3D --=

<!-- Maximum value of Galactocentric radius (R) in kpg --=
<L valu e <!-- Halo size in kpc. The Galaxy extends from -L to L --=
DimR wval : /= <l-- Number of grid points along R --=
<DimZ val 81" /= =l-- Number of grid points along vertical axis --»
<Ekmin value=".1" /= <!-- Miminum kinetic energy of propagated particles in GeV --=
<Ekmax value="10080." /= <!-- Maximum kinetic energy of propagated particles in GeV --=
Ektacto 1.: < Logaritmic spacing of energy grid. E[i] = exp(ln{Ekmin) + 1 1n

[Ekfactor) |
<NuclearChai

<!|-- Maximum atomic number of propagated particles --=
<!-- Minimum atomic number of propagated particles --=
<!-- The code propagates leptonic species (optional) --»

- First exercise

<!-- The code starts with dt = Dtmax; aftter Nrept iterations, the code rescales dt by the factor
Dtfactor; this process is iterated wntil Dtmin is reached --=

<Nrept value="30" /= <!-- Number of iterations before changing timestep --=

<Dtfactor value=".25" /= <!-- Rescaling factor of the time step --=

=Dtmin value="0.081" /= =l-- Minimum time step in Myr --=

=Dtmax wvalue="64." /= =l-- Maximum time step in Myr --=

L =|-- Gas model; options: BronfFerr, NS, Galprop, Uniform --=
=5NR tType erriere” f= <=!|-- Spurce distribution for the primary components; options: Lorimer,
Galprop, Fnrr:ﬂrn, OneRing, Rings --=
<oNR_Extra type grriere” J= =!-- Spource distribution for the extra component; options: the same as
ENRTgpe (mpr ﬂnalj -
=X C0mo SMag" = <!-- Model for the X CO factor; options: 5M96, galprop 2004,
gdlprup JU;U £UHdeHL = =or
iffusion type="Constant"= =!-- Spatial distribution of the diffusion coefficient; options:

{DHELanL. Exp Otau

=D 28 value="2.7" /= = Normalization of the diffusion coefficient at reference rigidity
DiffRefRig Unlt: 18728 cm™2/s =

=DiffRefRig value = "4% /= =!|-- Reference rigidity for the normalization of the diffusion
coefficient --=

ahwll1 value="8.6" f= <l-- Slope of the diffusion coefficient spectrum --=

<7zt wvalus 4" f= <!-- Scale heigth of the diffusion coefficient, useful inm Exp mode: {Z)

xproptn ﬁxp{zxz } {optional) --=
L." S =!-- Low energy correction factor of the diffusion coefficient: D
Hpruptu bEld tldT --=
SDiTfusion=
r;Lul:l;Ur type="Ptuskin94"= =| Optional block =
A kms wvalue="0 f= = Alfvén welocity in km#s

pssSectio alp X5ec" leptopt ama apopt="GalpropFunction" ApCs="2" /> =!-- Model for
Cross sections, lPﬂTDﬁT 15 Thr model for el rrTrnn and pnq]TrnP production; options: Kamae,
Gn1p|ﬂpT1r1e -
Magnet i eld type 'shirkow"= =!-- Model for the magnetic field. Options: Pshirkowv, Farrar,
Uﬂl Gru, lﬂym@dpl -
B "2 = =|-- Useful for Pshirkov field: halo regular field normalization in

> =) -- Useful for Pshirkow field: turbulent regular field normalization
in Gauss :
=BOturb
Magnetic
=SGalaxy=

-- Reference energy for nuclei normalization in GeV --=

<ELNormEn GeV¥ wvalue="33." /= -- Reference energy for primary electron normalization in GeY --=
<ProtNormFlux value g-2" [f= !'-- Proton flux at reference energy for normalization; in DRAGON

units:

GeV™-1 m™-2

<ELNormFlux value="@ /o <l-- Electron flux at reference energy for normalization; in DRAGON

units:

GeV™-1 m™-2 5™-1 sr™-

<ElNormEnExtra GeV wvalue="308" /= =|-- Reference energy for primary electron extra component

normalization in GeV --
<ElLNormFluxExtra value .B-06" f= =l-- Extra component flux at reference energy; in DRAGON units:

eV -1

T
[

S

o 1 value 1 g =!-- Position of second break (rigidity) in GV --=

m*=2 s™=1 sr*-1

dFkkkkEk kbR bk hkkER b kFERE |

wctionIndexALLNuclei= =!-- You can add an arbitrary number of breaks!! --=

pha @ value="2 22" f> <l-- First injection slope for nuclei -->
o B va IR <!-- Position of first break (rigidity) in GV --=
pha 1 value="2, 22" /= =l-- Second injection slope for nuclei --=

.-I .I Rl
5 . 111
4 walue="111
value="2.22" (=
T T § =
indexALl LU

kst ki ——

IndexElectrons= =!-- You can add am arbitrary number of breaks!! --=
" J <!-- Position of Tirst break (rigidity) in GV --=

pl=

Lpha & valu L BO" /= =l-- First injection slope for electrons --=
nha 1 1.860 -

Lpna

)

£
Lpha 3 w

N

=

CutoffR1gEL wvalu :
jectionIndexElectrons=
Eae b e o N

InjectionIndexExtraComponents

=/ 1N

<l --

=/CR=>

B valu "1
8 value
B ralie
offRigExtra
ectionIndexExtraComponent=
B R S SRS EEESEEEESEEESSS -

Oy g - +-->First exercise<-- - .
7 1-> run thé code -

~ $./DRAGON examples/run_ 2D.xml
< (this will take a couple of minutes)

2-> edit the python routine plots/plot protons.py in order to plot the proton
spectrum corresponding to this run with 3 different modulation potentials: 0.2 - 0.4 —
0.6 GV

3-> edit the python routine plots/plot BC.py in order to plot the B/C corresponding
to this run with 3 different modulation potentials: 0.2 - 0.4 — 0.6 GV

4-> edit the python routine plots/plot lepton fluxes.py in order to plot the
leptonic fluxes corresponding to this run with 3 different modulation potentials:
- 0.2-04-0.6 GV

 4bis-> edit the python routine plots/plot lepton fraction.py in order to plot the -
- positron fraction corresponding to this run with 3 different modulation potentials:
,0.2-0.4-0.6 GV

5-> fix the normalization of the electrons to 1.2 and the normalization of the extra
. component to 0.8 in both the flux and fraction routines and plot again!

- .

"+ .+ First exercise -

* _ -> This is what ydu shduld get:

e PAMELA 2009

"+ .+ First exercise -

* _ -> This is what ydu shduld get:

e AMS-02
v PAMELA

St w0 !
Ej [GeV /nuc]

..+ . First exercise G

* _ -> This is what ydu shduld get:

PAMELA 2013 [e"]
AMS-02 2013 [e]
AMS-02 2013 [e']

"+ .+ First exercise -

* _ -> This is what ydu shduld get:

« PAMELA 2013

..+ . First exercise G

* _ -> This is what ydu shduld get:

PAMELA 2013 [e"]
AMS-02 2013 [e]
AMS-02 2013 [e']

"+ .+ First exercise -

* _ -> This is what ydu shduld get:

« PAMELA 2013

-: . . 4 . i . : ." i s . ey
' s ® A | Y. 2 W= 2oL e ”
s it TR . [_§ B : B
e . R L e
i = 2 : L 2 .

“ A reference 2D run in which antiprotons and leptons originating from
- DM annihilation are propagated

T “examples/run_ 2D DM.xml”

3 leptonic fluxes corresponding to this run

- - and setting the normalization of the electrons to 1.2 and the normalization of the extra

_ ' : -'>Second eer'CISe<--__-"
B 1 > run the code Wlth the DM xml

~$./DRAGON examples/run_ 2D DM.xml
- (this will take a couple of minutes)

~ 2-> edit the python routine plots/ plot lepton fluxes.py in order to plot the
- - with 3 different modulation potentials: 0.2 - 0.4 — 0.6 GV

- component to 0.0

'~ .+ Second exercise "

el Uil e

* _ -> This is what ydu shduld get:

PAMELA 2013 [e"]
AMS-02 2013 [e]
AMS-02 2013 [e']

- = The first is a model with moderate reacceleration (v A =15 km/s) and o= 0.5

- Third exercise - *~ .

» .

Comparlng two dlfferent propagatlon models; W1th Kolmogorov llke and
- Kraichnan-like diffusion 3

: " The runs are run 2D KRA.xml and run 2D KOL.xml

<D0 _le28 value="2.7" />
<DiffRefRig value = "4" />
<Delta value="0.5" />

<zt value="4" />

<etaT value="-0.4" />

<vA kms value="15." />

— The second is similar to the so-called “conventional” model in Galprop-based papers; it features a
-~ high level of reacceleration (v_A = 30 km/s) and 0= 0.33

<D0_1e28 value="2. 78 "=

<DiffRefRig value = "4" />

<Delta value="0.33" />

<zt value="4" />
<etaT value="-1""%

<vA kms value="30." />

. These runs will take longer! Since there is a non negligible reacceleration, the number of iteration per
- timestep is larger — we set 90 instead of 30 as in plain diffusion runs, so the results, in particular
& those regarding the leptonic fluxes, are more reliable (thanks to KIT group for pointing this out)

- Third exercise - -~ .

Comparlng two dlfferent propagatlon models; W1th Kolmogorov llke and
k- " Kraichnan-like diffusion :

'~ The runs are run_2D KRA.xml and run 2D KOL.xml

< 1-> run the code

'~ $./DRAGON examples/run 2D KRA.xml && ./DRAGON

i examples/run 2D KOL.xml

(this will take several minutes)

- 2-> edit the python routine plots/ plot protons.py in order to plot the proton
spectrum corresponding to these runs trying to find the correct modulation
. potential

3-> edit the python routine plots/plot BC.py in order to plot the B/C

' "_ £ corresponding to these runs with the following modulation potentials: e
“04-0.6GV .

"+ .+ Third exercise - *

© > This is what you should get for the B/C:

Notice that the high energy
slopes are different due to
different values of 0; at
intermediate energies,
instead, the larger
reacceleration compensates
the lower 0 in the KOL
model;

0.40

(.35

(.30

(.25

~_0.20

.15

0.10

0.05

W 0.00 ; 2
P 10! 107
E [GeV/nuc]

. [Afewwordsabout3D ‘.

. " It's easy to run DRAGON in 3D mode!

- The code runs on a Cartesian (x,y,z) grid; it's possible to have a non-equidistant binning (we

: - acknowledge the Karlsruhe group for this feature) so regions where structures are present can be
." resolved more accurately

: 3 In the examples/ folder you can find run_3D.xml which is a good starting point.

 The code allows the user to implement a spiral arm structure, whose parameters are specified in

"~ the XML. This spiral arm structure may be applied to any distribution:
source term Q(z,y,z), gas density, interstellar radiation field (ISRF) ecc.

In this example, we apply the spiral arm distribution and see the effect on the propagated leptons.

Since the leptons, especially at high energy, suffer severe energy losses due to inverse Compton and
~ Synchrotron emission, they follow more closely the source term, and the presence of a spiral pattern -
- in this term is evident in the propagated fluxes.

. " Afew words about3D - .
- The routine plot_co.ntours_3D .py allows to visualize face-on maps of the
. propagated fluxes.

. Using this routine on the standard 3D run you should get this result.

1.05

0.90

0.75

0.60

=1 GeV, z

0.45

0.30

=
=
- —
o
e
-
=
i
=
=
=
[al

0.15

.l]

0.00

*+. Summary
F' .— We iearr;ed how to 1nstall ﬁandl rlu-n DRAGON

. —we learned how to prepare a meaningful parameter file
. —we have a set of exercises that may be useful to get started with the code:

0) plotting the proton spectrum for a simple 2D run

1) plotting all the relevant species in a standard 2D run, playing with
normalization and tuning the modulation potential

2) plotting a DM run
3) comparing different propagation models

4) running the code in 3D mode and plotting a face-on map of the Galaxy

z 5 r . . i : iy 3 - . o i s 4 i . i 3
Hn 5 Tl s, 1 ! s L e = LA : L o . : e g Hi 3 ik -
&7 .w - : ¥ 3 . : : - : 5 B 3
>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

