BSM and Higgs simulations for CLIC

Philipp Roloff (CERN) on behalf of the CLICdp collaboration

2nd International WHIZARD Forum Würzburg, 16-18 March 2015

Overview:

- Precision SM Higgs measurements
 - Prospects for BSM physics

• Usage of WHIZARD 2 for CLIC physics benchmark studies

Reminder: CLIC energy stages

CLIC would be implemented in stages:

- Optimised running conditions over a wide energy range
- The energy stages are defined by physics (with additional technical considerations)
- \rightarrow The strategy can be adapted to discoveries at the LHC at 13/14 TeV

Example scenario assumed for this talk:

Philipp Roloff

17/03/2015

\rightarrow see talk by Lucie Linssen <u>Stage 1:</u> 350 / 380 GeV, 500 fb⁻¹ SM Higgs physics, 350 GeV 1.4 TeV 3 TeV tt threshold scan \rightarrow see talk by Roman Poeschl C ross-section [fb] 10² 10 1 H + XtŦ • Stage 2: 1.4 TeV, 1.5 ab⁻¹ Targeted at BSM physics, — Higgs rare Higgs processes and decays — τ̃, μ̃, ẽ — charginos • Stage 3: 3 TeV, 2 ab⁻¹ — squarks Targeted at BSM physics, 10⁻¹ rare Higgs processes and decays — SM tī $--\widetilde{\nu}_{\tau}, \widetilde{\nu}_{u}, \widetilde{\nu}_{e}$ 10⁻² 3000 1000 2000 Ω (each stage corresponds to 4-5 years) neutralinos \sqrt{s} [GeV]

New CLIC staging baseline

Detector benchmark studies

- Studies in this talk obtained using the CLIC_ILD and CLIC_SiD detector concepts
- New CLIC detector concept in preparation

More details \rightarrow see talk by Lucie Linssen

• Pile-up from $\gamma\gamma \rightarrow hadrons\ interactions$ overlaid to the physics events

• 1.3(3.2) events per BX at 1.4(3) TeV

• Suppressed using timing capabilities of the detectors and hadron-collider type jet algorithms

CLIC Higgs capabilities:

- Single Higgs production
- Processes at high energy
 Combined analysis

[all results as shown at LCWS14, http://lcws14.vinca.rs]

Single Higgs production at CLIC

17/03/2015

Single Higgs production at CLIC

17/03/2015

Some numbers

	Polarization	Enhance	Enhancement factor		
Benchmark studies assume	$P(e^-): P(e^+)$	$e^+e^- \rightarrow ZH$	$e^+e^- {\rightarrow} H\nu_e\overline{\nu}_e$		
unpolarised bearris	unpolarized	1.00	1.00		
	-80%: 0%	1.18	1.80		

Higgsstrahlung at 350 GeV (1)

HZ events can be identified from Z recoil mass \rightarrow model independent measurements of the g_{HZZ} coupling

 $\Delta(\sigma_{_{HZ}}) / \sigma_{_{HZ}} \approx 4\% \rightarrow \Delta(g_{_{HZZ}}) / g_{_{HZZ}} \approx 2\% \quad \text{from } Z \rightarrow \mu^{+}\mu^{-} \text{ and } Z \rightarrow e^{+}e^{-}$

Higgsstrahlung at 350 GeV (2)

- Substantial improvement using hadronic Z decays
- Challenge: $Z \rightarrow q\overline{q}$ reconstruction may depend on Higgs decay mode
- Even extreme variations of the SM Higgs BRs lead to bias $\leq \frac{1}{2}$ stat. error

 $\Delta(\sigma_{_{_{_{HZ}}}}) / \sigma_{_{_{_{HZ}}}} \approx 1.8\% \rightarrow \Delta(g_{_{_{_{HZZ}}}}) / g_{_{_{_{HZZ}}}} \approx 0.9\%$ from hadronic Z decays

σ x BR measurements at 350 GeV

Measurement	Observable	Stat. precision	
$\sigma(HZ) \ge BR(H \rightarrow T^{+}T^{-})$	$g^2_{_{HZZ}}g^2_{_{H\pi}}$ / $\Gamma_{_{H}}$	6.2%	S
$\sigma(HZ) \ge BR(H \rightarrow b\overline{b})$	$g^2_{_{HZZ}}g^2_{_{Hbb}}$ / $\Gamma_{_{H}}$	1% (estimated)	ean
$\sigma(HZ) \ge BR(H \rightarrow c\overline{c})$	$g^2_{HZZ}g^2_{Hcc}$ / Γ_{H}	5% (estimated)	q pé
$\sigma(HZ) \ge BR(H \rightarrow gg)$		6% (estimated)	ning arise
$\sigma(HZ) \ge BR(H \rightarrow WW^*)$	$g^2_{_{HZZ}}g^2_{_{HWW}}$ / $\Gamma_{_{H}}$	2% (estimated)	sum pola
$\sigma(Hv_{e}v_{e}^{-}) \ge BR(H \rightarrow b\overline{b})$	${g^2}_{_{HWW}}{g^2}_{_{Hbb}}$ / ${\Gamma}_{_{H}}$	3% (estimated)	As un

In addition: $BR(H \rightarrow inv.) < 0.97\%$ at 90% C.L.

17/03/2015

Measurements using Hv_ev_e events

Large Higgs samples produced in WW fusion at high energy:

- \rightarrow Precision measurements of σ x BR
- \rightarrow Access to rarer decay modes

Measurement	Observable	Stat. precision (1.4 TeV)	Stat. precision (3 TeV)
$\sigma(Hv_e^{-}v_e^{-}) \ge BR(H \rightarrow T^{+}T^{-})$	$g^2_{HWW}g^2_{H\pi\pi}$ / $\Gamma_{_H}$	4.2%	tbd
$\sigma(Hv_e^{-}v_e^{-}) \ge BR(H \rightarrow b\overline{b})$	$g^2_{_{HWW}}g^2_{_{Hbb}}$ / $\Gamma_{_{ m H}}$	0.3%	0.2%
$\sigma(Hv_e v_e) \ge BR(H \rightarrow c\bar{c})$	$g^2_{_{_{_{HWW}}}}g^2_{_{_{_{Hcc}}}}$ / $\Gamma_{_{_H}}$	2.9%	2.7%
$\sigma(Hv_e v_e) \ge BR(H \rightarrow gg)$		1.8%	1.8%
$\sigma(Hv_e^{-}v_e^{-}) \ge BR(H \rightarrow \mu^+\mu^{-})$	$g^2_{_{_{_{HWW}}}}g^2_{_{_{H\mu\mu}}}$ / $\Gamma_{_{_H}}$	38%	16%
$\sigma(Hv_e^{}\overline{v}_e^{}) \ge BR(H \rightarrow \gamma\gamma)$		15%	tbd
$\sigma(Hv_e^{-}v_e^{-}) \ge BR(H \rightarrow Z\gamma)$		42%	tbd
$\sigma(Hv_e v_e) \ge BR(H \rightarrow ZZ^*)$	$g^2_{HWW}g^2_{HZZ}$ / $\Gamma_{_{ m H}}$	3% (estimated)	2% (estimated)
$\sigma(Hv_e v_e) \ge BR(H \rightarrow WW^*)$	$g_{_{\mathrm{HWW}}}^{_{\mathrm{HWW}}}$ / $\Gamma_{_{\mathrm{H}}}$	1.4%	0.9% (estimated)

Other processes at higher energy

17/03/2015

Other processes at higher energy

17/03/2015

The ttH final state at 1.4 TeV

Investigated final states: "6 jets": $t(\rightarrow qqb)\overline{t}(\rightarrow lv\overline{b})H(\rightarrow b\overline{b})$ "8 jets": $t(\rightarrow qqb)\overline{t}(\rightarrow qq\overline{b})H(\rightarrow b\overline{b})$ \rightarrow Four b-quarks in the final state

Combination of both final states: $\Delta \sigma(t\bar{t}H) / \sigma(t\bar{t}H) = 8.4\%$ $\rightarrow \Delta g_{ttH} / g_{ttH} = 4.5\%$

Double Higgs production at high energy

• Only 225 (1200)
$$e^+e^- \rightarrow HHv_e^-v_e^-$$
 events at 1.4 (3)

 \rightarrow high energy and luminosity crucial

Measurement	1.4 TeV	3 TeV
$\Delta(g_{_{HHWW}})$	7% (preliminary)	3% (preliminary)
$\Delta(\lambda)$	32%	16%
$\Delta(\lambda)$ for P(e ⁻) = -80%	24%	12%

17/03/2015

Philipp Roloff

BSM and Higgs simulations for CLIC

CLIC Higgs studies

			Statistical precision		
Channel	Measurement	Observable	350 GeV	1.4 TeV	3.0 TeV
			500 fb^{-1}	$1.5 { m ~ab^{-1}}$	$2.0 \mathrm{~ab}^{-1}$
ZH	Recoil mass distribution	m _H	120 MeV	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{invisible})$	$\Gamma_{ m inv}$	0.6%	—	—
ZH	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$	tbd	—	—
$H\nu_e\overline{\nu}_e$	$H \rightarrow b\overline{b}$ mass distribution	m _H	—	40 MeV*	33 MeV*
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{Z} \to \ell^+ \ell^-)$	$g^2_{\rm HZZ}$	4.2%	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{Z} \to \mathrm{q}\overline{\mathrm{q}})$	$g^2_{\rm HZZ}$	1.8%	—	—
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ} g^2_{ m Hbb}/\Gamma_{ m H}$	$1\%^\dagger$	_	—
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HZZ} g^2_{ m Hcc}/\Gamma_{ m H}$	$5\%^\dagger$	_	—
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{gg})$		$6\%^\dagger$	_	_
ZH	$\sigma(\mathrm{HZ}) imes \mathit{BR}(\mathrm{H} ightarrow au^+ au^-)$	$g^2_{ m HZZ} g^2_{ m H au au}/\Gamma_{ m H}$	6.2%	_	—
ZH	$\sigma(\mathrm{HZ}) imes BR(\mathrm{H} o \mathrm{WW}^*)$	$g^2_{ m HZZ} g^2_{ m HWW}/\Gamma_{ m H}$	$2\%^\dagger$	_	—
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{ZZ}^*)$	$g^2_{ m HZZ} g^2_{ m HZZ} / \Gamma_{ m H}$	tbd	_	—
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HWW}g^2_{ m Hbb}/\Gamma_{ m H}$	$3\%^{\dagger}$	0.3%	0.2%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HWW}g^2_{ m Hcc}/\Gamma_{ m H}$	_	2.9%	2.7%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{gg})$		_	1.8%	1.8%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) imes BR(\mathrm{H} ightarrow \mathrm{\tau}^{+}\mathrm{\tau}^{-})$	$g^2_{ m HWW} g^2_{ m H au au}/\Gamma_{ m H}$	_	4.2%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mu^{+}\mu^{-})$	$g^2_{ m HWW}g^2_{ m Huu}/\Gamma_{ m H}$	_	38%	16%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \gamma\gamma)$		_	15%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{Z}\gamma)$		_	42%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{WW}^{*})$	$g_{ m HWW}^4/\Gamma_{ m H}$	tbd	1.4%	$0.9\%^\dagger$
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{ZZ}^*)$	$g_{\rm HWW}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	_	$3\%^{\dagger}$	$2\%^\dagger$
He ⁺ e ⁻	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ}g^2_{ m Hbb}/\Gamma_{ m H}$	_	$1\%^\dagger$	$0.7\%^\dagger$
tīH	$\sigma(t\bar{t}H) \times BR(H \to b\bar{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	_	8%	tbd
$HH\nu_{e}\overline{\nu}_{e}$	$\sigma(\mathrm{HHv_e}\overline{\mathrm{v}_e})$	<i>8</i> HHWW	—	7%*	3%*
$HH\nu_{e}\overline{\nu}_{e}$	$\sigma(\mathrm{HHv_e}\overline{\mathrm{v}_e})$	λ	_	32%	16%
$HH\nu_{e}\overline{\nu}_{e}$	with $-80\% e^-$ polarization	λ	_	24%	12%

*: preliminary

[†]: estimated

17/03/2015

Philipp Roloff

BSM and Higgs simulations for CLIC

Putting it all together

TeV

က

- Fully model-independent, only possible at a lepton collider
- All results limited by 0.8% from $\sigma(HZ)$ measurement
- The Higgs width is extracted with 5 3.5% precision

Analysis similar to LHC experiments

Parameter	Measurement precision			
	350 GeV + 1.4 TeV		+3.0 TeV	
	$500 {\rm ~fb}^{-1}$	$+1.5 \text{ ab}^{-1}$	$+2.0 \text{ ab}^{-1}$	
K _{HZZ}	0.44~%	0.31 %	0.23 %	
$\kappa_{ m HWW}$	1.5 %	0.17~%	0.11 %	
$\kappa_{ m Hbb}$	1.7 %	0.37 %	0.22%	
$\kappa_{ m Hcc}$	3.1 %	1.1~%	0.75%	
$\kappa_{ m H au au}$	3.7 %	1.5 %	1.2 %	
$\kappa_{\rm H\mu\mu}$	—	14.1 %	5.5 %	
$\kappa_{\rm Htt}$	—	4.0~%	$\leq 4.0\%$	
$\kappa_{ m Hgg}$	3.6%	0.79~%	0.55 %	
$\kappa_{\rm H\gamma\gamma}$	—	5.6 %	< 5.6 %	
$\Gamma_{\mathrm{H},md,derived}$	1.6 %	0.32 %	0.22 %	

 $c_i^2 = rac{\Gamma_i}{\Gamma_i^{\text{SM}}}$ No invisible decays: $\Gamma_{\text{H,model}} = \sum_i \kappa_i^2 \cdot BR_i^{\text{SM}}$ Sub-percent precisions at high energy → Results strongly dependent on fit assumptions

What's next for Higgs physics?

- Single Higgs production: addressing a few channels not covered so far $(e^+e^- \rightarrow Hv_e^-v_e^- \rightarrow WW^*v_e^-v_e^- at 350 \text{ GeV}, H \rightarrow \gamma\gamma at 3 \text{ TeV}, ZZ \text{ fusion at 3 TeV})$
- Reanalysis of double Higgs production: add the HH \rightarrow bbWW* final state (40% more events compared to HH \rightarrow bbbb alone)

Snowmass Higgs WG report, arXiv:1310.8361

BSM and Higgs simulations for CLIC

Prospects for BSM physics:

- Direct searches (example: SUSY)
- Sensitivity of precision measurements

Prospects for BSM physics

• Two approaches:

1.) Pair production of new particles if $M \le \sqrt{s} / 2$ \rightarrow CLIC especially attractive for electroweak states

 \rightarrow Precision measurement of new particle masses and couplings

Many examples of SUSY particle production studied for CLIC CDR

2.) Indirect searches through precision observables \rightarrow possibility to reach much higher mass scales

One of the priorities for future benchmarking studies

Investigated SUSY models

 $\tilde{ au}, \tilde{\mu}, \tilde{e}$

- ----- charginos
- SM

---- $\tilde{
u}_{ au}, \tilde{
u}_{\mu}, \tilde{
u}_{e}$

17/03/2015

- neutralinos

Wider applicability than only SUSY: Reconstructed particles can be classified simply as states of given mass, spin and quantum numbers

Reconstruction of SUSY particles

Endpoints of energy spectra:

Complex final states:

 $e^+e^- \rightarrow HA \rightarrow bbbb$ $e^+e^- \rightarrow H^+H^- \rightarrow tbbt$

≈0.3% precision on hevay Higgs masses

50

17/03/2015 Philipp Roloff

Summary of the SUSY studies

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Generator value (GeV)	Stat. uncertainty
3.0	Sleptons	$\begin{split} \widetilde{\mu}_{R}^{+} \widetilde{\mu}_{R}^{-} &\to \mu^{+} \mu^{-} \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} \\ \widetilde{e}_{R}^{+} \widetilde{e}_{R}^{-} &\to e^{+} e^{-} \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} \\ \widetilde{\nu}_{e} \widetilde{\nu}_{e} &\to \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} e^{+} e^{-} W^{+} W^{-} \end{split}$	II	$ \begin{array}{l} \tilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^0 \text{ mass} \\ \tilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^0 \text{ mass} \\ \tilde{\ell} \text{ mass} \\ \tilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^{\pm} \text{ mass} \end{array} $	1010.8 340.3 1010.8 340.3 1097.2 643.2	$\begin{array}{c} 0.6\% \\ 1.9\% \\ 0.3\% \\ 1.0\% \\ 0.4\% \\ 0.6\% \end{array}$
3.0	Chargino Neutralino	$ \begin{array}{c} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array} $	II	$ \begin{array}{c} \widetilde{\chi}_1^{\pm} \mbox{ mass} \\ \widetilde{\chi}_2^0 \mbox{ mass} \end{array} $	643.2 643.1	1.1% 1.5%
3.0	Squarks	$\widetilde{q}_R \widetilde{q}_R \rightarrow q \overline{q} \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	Ι	\widetilde{q}_R mass	1123.7	0.52%
3.0	Heavy Higgs	$egin{array}{l} H^0 A^0 & ightarrow b \overline{b} b \overline{b} \ H^+ H^- & ightarrow t \overline{b} b \overline{t} \end{array}$	Ι	${ m H^0/A^0}\ { m mass}\ { m H^\pm}\ { m mass}$	902.4/902.6 906.3	0.3% 0.3%
1.4	Sleptons	$\begin{split} \widetilde{\mu}_{R}^{+} \widetilde{\mu}_{R}^{-} &\to \mu^{+} \mu^{-} \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} \\ \widetilde{e}_{R}^{+} \widetilde{e}_{R}^{-} &\to e^{+} e^{-} \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} \\ \widetilde{\nu}_{e} \widetilde{\nu}_{e} &\to \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0} e^{+} e^{-} W^{+} W^{-} \end{split}$	III	$ \begin{array}{l} \widetilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^0 \text{ mass} \\ \widetilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^0 \text{ mass} \\ \widetilde{\ell} \text{ mass} \\ \widetilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^{\pm} \text{ mass} \end{array} $	560.8 357.8 558.1 357.1 644.3 487.6	$\begin{array}{c} 0.1\% \\ 0.1\% \\ 0.1\% \\ 0.1\% \\ 2.5\% \\ 2.7\% \end{array}$
1.4	Stau	$\widetilde{\tau}_1^+ \widetilde{\tau}_1^- \to \tau^+ \tau^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$\widetilde{\tau}_1$ mass	517	2.0%
1.4	Chargino Neutralino	$ \begin{array}{c} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array} $	III	$ \begin{array}{l} \widetilde{\chi}_1^\pm \text{ mass} \\ \widetilde{\chi}_2^0 \text{ mass} \end{array} $	487 487	0.2% 0.1%

17/03/2015

Philipp Roloff

BSM and Higgs simulations for CLIC

Precision studies of $e^+e^- \rightarrow \mu^+\mu^-$

17/03/2015

Philipp Roloff

BSM and Higgs simulations for CLIC

Composite Higgs bosons

- Higgs as composite bound state of fermions
- m_{ρ} : mass of the vector resonance of the composite theory
- $\xi = (v / f)^2$ measures the strengths of the Higgs interactions

CLIC provides an indirect probe of a Higgs composite scale of 70 TeV

What's next for BSM?

Interesting SUSY signatures not yet studied for CLIC:

1.) <u>Gauginos/Higgsinos with small mass splittings</u> \rightarrow Main signal: γ + missing energy + soft particles (challenging in the presence of beam-induced backgrounds) 2.) <u>Top squark production</u> e.g. $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 \rightarrow$ boosted top quarks

- Model-independent searches for Dark Matter using the γ + missing energy final state
- Higher-dimensional effective operators
- Hidden sector searches, more on compositeness, weakly interacting exotica, ...

Crucial: need to be ready to respond to theoretical interpretation of new LHC data

Precision top and EW as tools for BSM

Precision top measurements:

- So far focussed on top mass at lower energies (350 GeV and 500 GeV)
- Explore potential of tt events to probe for new physics, examples:
 - A_{FB}^{t} (and A_{FB}^{b})
 - top quark couplings to γ, W and Z
 - Search for FCNC top decays
- $V_{_{tb}}$ from $e\gamma \rightarrow tbv_{_{e}}$ at high energy

Triple and quartic gauge couplings using $e^+e^- \rightarrow W^+W^-(vv/e^+e^-)$: Important to choose parametrisation comparable to other studies/experiments!

W boson mass determination at high energy: Large samples of single W events produced at high-energy CLIC

Usage of WHIZARD 2 for CLIC physics studies

[most of the results shown on the previous slides were obtained using WHIZARD 1.95]

Future detector model and software chain

 All current benchmarks are SiD ILD performed either for the software software **CLIC** ILD or the **CLIC** SiD detector model New detector concept optimised for CLIC: move to single software chain in the future **CLIC** detector 2015 On the same time scale: software chain WHIZARD 1.95 \rightarrow WHIZARD 2.2

Future software chain

17/03/2015 Philipp Roloff

Technical issues

Needed output formats:

- stdhep (for compatibility with CDR software chain)
- LCIO (input for simulation of new detector model)

Hadronisation by PYTHIA 6.4 as integrated in WHIZARD 2

Correlated spectra for lepton and photon beams:

- Reading beam events not convenient for mass production
- The plan is to use parametrisation provided by CIRCE2

Interface WHIZARD 2 to ILCDIRAC production system:

• Will be done in the near future

Summary and conclusions

17/03/2015 Philipp Roloff BSM and Higgs simulations for CLIC

Summary and conclusions

• The first stage of a CLIC collider at 350 GeV provides precise determinations of the absolute values of many Higgs boson couplings

 Subsequent high-energy running, here assumed at 1.4 and 3 TeV, improves the precision of many observables significantly and gives access to rare Higgs production processes and decays

• CLIC operated at high-energy (1.4 and 3 TeV) provides significant discovery potential for BSM phenomena through direct and indirect searches

 Many more studies started / will start soon: also on BSM sensitivity through precision top / SM observables

• WHIZARD 1 is a crucial tool for CLIC physics benchmark studies, we are looking forward to switch to WHIZARD 2 soon

Backup slides

If you want to know more...

DECAMBATION EDBOPTIONE POLICIA RECHERCIE NUCLÉAR CERNI DROPFAN ORGANIZATION FOR NUCLÉAR RESEARCH

THE CLIC PROGRAMME: TOWARDS A STAGED e⁺e⁺ LINEAR COLLIDER EXPLORING THE TERASCALE CLIC OWNERS DEPORTMENT

CLIC Conceptual Design Report (CDR) Vol. 2: Physics and Detectors (mostly at 3 TeV)

arXiv:1202.5940

CLIC CDR Vol. 3: Staged construction, SUSY at 1.4 TeV, Z'

arXiv:1209.2543

Snowmass white paper: Most of the Higgs studies

arXiv:1307.5288 (last update: 01/10/2013)

2-beam acceleration scheme

17/03/2015

Philipp Roloff

BSM and Higgs simulations for CLIC

Selected CLIC parameters

Beam related backgrounds

Coherent e^+e^- pairs: 7 · 10⁸ per BX, very forward Incoherent e^+e^- pairs: 3 · 10⁵ per BX, rather forward \rightarrow Detector design issue (high occupancies)

$\gamma\gamma \rightarrow hadrons$

- "Only" 3.2 events per BX at 3 TeV
- Main background in calorimeters and trackers
- \rightarrow Impact on physics

CLIC detector concepts

17/03/2015

Background suppression

Triggerless readout of full bunch train:

1.) Identify t_o of physics event in offline event filter

- Define reconstruction window around t_n
- All hits and tracks in this window are passed to the reconstruction \rightarrow Physics objects with precise p_{τ} and cluster time information
- 2.) Apply cluster-based timing cuts
 - Cuts depend on particle-type, $\boldsymbol{p}_{_{T}}$ and detector region
 - \rightarrow Protects physics objects at high p_T

In addition: hadron-collider type jet algorithms (FastJet)

tCluster

Impact of the timing cuts

 $e^+e^- \rightarrow t\bar{t}$ at 3 TeV with background from $\gamma\gamma \rightarrow$ hadrons overlaid

1.2 TeV background in the reconstruction window **100 GeV background** after timing cuts

Physics studies are based on Geant4 simulations including pile-up from $\gamma\gamma \rightarrow$ hadrons

Precision measurements

Rare decays

The simplest case: sleptons at 3 TeV

- Slepton production very clean at CLIC
- Slepton masses ≈ 1 TeV
- Investigated channels include:

$$\begin{split} e^+e^- &\rightarrow \tilde{\mu}^+_R \tilde{\mu}^-_R \rightarrow \mu^+ \mu^- \tilde{\chi}^0_1 \tilde{\chi}^0_1 \\ e^+e^- &\rightarrow \tilde{e}^+_R \tilde{e}^-_R \rightarrow e^+e^- \tilde{\chi}^0_1 \tilde{\chi}^0_1 \\ e^+e^- &\rightarrow \tilde{\nu}_e \tilde{\nu}_e \rightarrow e^+e^- W^+ W^- \tilde{\chi}^0_1 \tilde{\chi}^0_1 \end{split}$$

endpoints of energy spectra

• Precisions of a few GeV achievable

Hadronic final states: gauginos at 3 TeV

Precision on the measured gaugino masses (few hundred GeV): 1 - 1.5%

17/03/2015

Philipp Roloff

Heavy Higgs bosons at 3 TeV

Heavy Higgs bosons:

17/03/2015

 $e^+e^- \rightarrow HA \rightarrow b\overline{b}b\overline{b}$ $e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$ (H, A and H[±] almost degenerate in mass) Complex final states

Accuracy of the heavy Higgs mass measurements: ≈0.3%