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The prequel 

• Parton shower event generators are an important 
tool for physics.

• Dave Soper (UofO) and I have a parton shower 
generator, DEDUCTOR. 
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• What evolution equation should describe a shower?

✴We suggest a formulation that includes spin and 
color correlations.

• How can this equation be approximated in a 
computer program?

✴Start with spin averaged.

✴For color, we use an “LC+” approximation, 
somewhat better than the leading color 
approximation.

• Can this sum logarithms?

✴This talk.
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• Showers develop in “shower time.”

• Hardest interactions first.

Shower evolution

4
Real time picture Shower time picture



Shower ordering variable



Contrast with SCET

• SCET divides gluon emissions into hard, collinear to 
hadron A, collinear to hadron B, and soft.

• Each region gets its own special treatment.

• Since the boundaries between regions should not 
matter, we get differential equations to solve.
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• In a parton shower, we have just 
two regions: hard and 
everything else.

• We solve a differential equation 
in the hardness variable that sets 
the boundary between hard and 
everything else.

• We count on having a good 
approximation to sort out 
collinear regions from the soft 
region.



Evolution equation
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The shower state evolves in shower time.



An obvious question

• Is this going to sum large logarithms?
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Visible Logs
”Visible logs”, something like the transverse momentum of the Drell-Yan pair. This is also called to 
“recoil logs”.

ŝs
Q2

Only soft gluon 
can be emitted!

k2T

L = log

Q2

k2T
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• There are large logarithms log(M2
Z/p2

�).

• Measure the p� of the Z-boson for p2
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Z ,

• We know how to sum these in QCD.

�Logarithms of p
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• Consider A + B ⇥ Z + X
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What we might hope for,



Why this should work

• The splitting probabilities have the right soft and 
collinear singularities.

• Parton splitting is iterated.

• So how could it fail?
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Why this should not work

• It has been known since the 1980s that 
exponentiation of double logs comes from emissions 
ordered in angles.

• The angle ordering comes from quantum coherence.

• So you need a shower ordered in angles, not a 
hardness variable.

• Or else we need SCET.

• The hardness ordered shower is doomed.
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Numerical approach with 
Deductor
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Threshold logarithms



Invisible Logs
”Invisible logs”, live under the integral. They are the so called threshold logs.
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ŝ
⇡ 1 =) L = log

✓
1� Q2

ŝ

◆

Q2

Only soft gluon 
can be emitted!
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Including threshold logs



What not to do



What to do
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What happens



The most important term
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Paâ(1) [1⌦ 1]

� ↵s

2⇡

Z 1/(1+y)

0

dz

z


fa/A(⌘a/z, µ

2
a(t))

fa/A(⌘a, µ2
a(t))

� 1

�

⇥
 X

k 6=a,b

wak(z, y)
1

2
[(Ta · Tk)⌦ 1 + 1⌦ (Ta · Tk)]

�

+
↵s

2⇡


� i⇡[(Ta · Tb)⌦ 1] + i⇡[1⌦ (Ta · Tb)]

�)

⇥
��{p, f, s0, c0, s, c}m

�

The full contribution to the threshold logs is 

Let us compare this to SCET!
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• We use parton distribution functions fa/A(η, μ2). The definition ought to be 
determined by the choice of shower time that we use, even with massless 
quarks. The difference between definitions is of order αs, at least if make 
good choices. 

• I would appear that the standard MSbar PDF corresponds to kT ordering. 
How does PDF depend on the choice of the ordering variable?
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this dependence in a rather simple form:
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The starting point of the shower is the Born cross section and we 
should use MSbar PDF.

That is 

This is implemented in DEDUCTOR.

We have to consider these threshold factors at the 
beginning of the shower evolution. 

�B =
z }| {
Zq(⌘a, µ

2)Zq̄(⌘b, µ
2) fq/A(⌘a, µ

2, 1) fq̄/B(⌘b, µ
2, 1) �̂B| {z }



Summary
• DEDUCTOR is designed to do a better job with color, spin and resummation 

of large logarithms compared to other shower generators.
• Lambda ordering with and without initial state massive quarks
• LC+ color treatment. It allows us to do color evolution at amplitude level 
• Spin correlations are not yet computed

• Next version is available soon…

• The shower equation is implemented at very abstract level. It allows us to 
use other ordering variables like kT or angle (massless or massive initial 
state partons).

• Initial state threshold log resummation.

• It is available at

http://www.desy.de/~znagy/deductor 
http://pages.uoregon.edu/soper/deductor

http://www.desy.de/~znagy/deductor
http://pages.uoregon.edu/soper/
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Conclusion, Outlook
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We need a formal proof that the 
perturbative sum of the cross section can 
be rearranged as a product.   

This is just a design of the parton shower and it make sense at LO level. As far as I know there is no 
formal definition even at leading order level.

Finite corrections
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