First steps towards WHIZARD + NLO

Bijan Chokoufé ${ }^{a}$, Wolfgang Kilian ${ }^{b)}$, Jürgen Reuter ${ }^{a)}$, Christian Weiss ${ }^{a), b)}$

a) Deutsches Elektronen-Synchrotron, Hamburg
${ }^{\text {b) }}$ Theoretische Physik 1, Universität Siegen

2nd International WHIZARD Forum, Würzburg, March 16th 2015

(1) NLO Calculations in Event Generators
(2) Parton Shower Matching with the POWHEG Method

A Textbook Example

Consider the process $e^{+} e^{-} \rightarrow u \bar{u}$.
Task: Compute the $\mathcal{O}\left(\alpha_{s}\right)$-contributions to the cross section.
So we write down:

Problem: Matrix elements are divergent for small k !

$$
\sim \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}} \frac{(\not p-\not k) \gamma^{\mu}(\not p+\not k)}{(p-k)^{2}(p+k)^{2}} \supset \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{6}}
$$

A Textbook Example

Standard approach: Dimensional Regularisation: Perform integration in $d=4-2 \varepsilon$ dimensions.
This leads to:

$$
\sigma_{\mathrm{virt}} \sim \frac{\alpha_{s}}{2 \pi} \cdot \sigma_{\mathrm{LO}} \cdot C_{F} \cdot\left(-\frac{2}{\varepsilon^{2}}-\frac{3}{\varepsilon}-8\right)
$$

and

$$
\sigma_{\text {real }} \sim \frac{\alpha_{s}}{2 \pi} \cdot \sigma_{\mathrm{LO}} \cdot C_{F} \cdot\left(\frac{2}{\varepsilon^{2}}+\frac{3}{\varepsilon}+\frac{19}{2}\right) .
$$

Thus, the total cross section is

$$
\sigma_{\mathrm{NLO}}=\sigma_{\text {virt }}+\sigma_{\text {real }}=\sigma_{\mathrm{LO}} \cdot \frac{\alpha_{s}}{\pi}
$$

KLN-Theorem (1964)

The sum of virtual and real amplitudes is finite

Subtraction of Divergences

KLN theorem not valid for event generator:

- Dim. Regularisation works in an abritrary (complex) number of dimensions.
- MC Integration requires explicitly constructed phase space \rightarrow The computer is confined to four dimensions!

Subtraction of Divergences

KLN theorem not valid for event generator:

- Dim. Regularisation works in an abritrary (complex) number of dimensions.
- MC Integration requires explicitly constructed phase space \rightarrow The computer is confined to four dimensions!

Solution:

Create subtraction terms \mathcal{C} which cancel the divergences of \mathcal{R} and \mathcal{V} and compute

$$
\begin{aligned}
\sigma^{\mathrm{NLO}} & =\underbrace{\int_{n+1}\left(d \sigma^{R}-d \sigma^{C}\right)}_{\text {finite }} \\
& +\underbrace{\int_{n+1} d \sigma^{C}+\int_{n} d \sigma^{V}}_{\text {finite }}
\end{aligned}
$$

Common Subtraction Schemes

The most frequently used subtraction schemes ared

- Catani Seymour [S. Catani and M. н. Seymour hep-ph/9605323] Uses dipole splitting functions

$$
\mathcal{D}_{i j, k}=\langle 1, \ldots, \tilde{j}, \ldots, \tilde{k}, \ldots, n \mid 1, \ldots, \tilde{i j}, \ldots, \tilde{k}, \ldots, n\rangle \otimes V_{i j, k}
$$

Implemented e.g. in HERWIG++, SHERPA

- FKS [R. Frederix, s. Frixione, F. Maltoni, T. Steterer, axiv:0008.4272]

Uses phase-space mappings and plus-distributions
Implemented e.g. in POWHEG-BOX, MG5_aMC, WHIZARD

- Nagy-Soper [c. Chung, M. Kràmer, T. Robens, artiv:1012 29988] Uses fully spin- and color-correlated splitting functions of improved parton shower [z. Nagy and E. Soper, arxi:0070.0017]
Implemented e.g. in HELAC + DEDUCTOR

FKS subtraction

i) Find all tuples of particle indices which can give rise to a singularity, e.g.

$$
\mathcal{I}=\{(1,5),(1,6),(2,5),(2,6),(5,6)\}
$$

ii) Partition the phase space:

$$
1=\sum_{\alpha \in \mathcal{I}} S_{\alpha}(\Phi),
$$

such that the real matrix element \mathcal{R}

$$
\mathcal{R}=\sum_{\alpha \in \mathcal{I}} \mathcal{R}_{\alpha}, \quad \underbrace{\mathcal{R}_{\alpha}}_{\begin{array}{c}
\text { Singular only } \\
\text { for one tuple! }
\end{array}}=\mathcal{R} S_{\alpha}
$$

iii) Add subtraction terms for each singular region.

Constructing Subtraction Terms

Real subtraction: Factorization in the soft and collinear limit

$$
\left|\mathcal{A}^{(n+1)}\left(\Phi_{n+1}\right)\right|^{2} \rightarrow \mathcal{D}_{\mathcal{I}} \otimes\left|\mathcal{A}^{(n)}\left(\Phi_{n}\right)\right|^{2}
$$

\otimes : Convolution over spin and color.

Soft subtraction involves color-correlated matrix elements:
$\mathcal{B}_{k l} \sim-\sum_{\substack{\text { color } \\ \text { spin }}} \mathcal{A}^{(n)} \overrightarrow{\mathcal{Q}}\left(\mathcal{I}_{k}\right) \cdot \overrightarrow{\mathcal{Q}}\left(\mathcal{I}_{l}\right) \mathcal{A}^{(n) *}$,
with
$\overrightarrow{\mathcal{Q}}(\mathcal{I})=\left\{t^{a}\right\}_{a=1}^{8},\left\{-t^{a T}\right\}_{a=1}^{8},\left\{T^{a}\right\}_{a=1}^{8}$

Collinear subtraction involves spin-correlated matrix elements:

$$
\mathcal{B}_{+-} \sim R e\left\{\frac{\left\langle k_{\mathrm{em}} k_{\mathrm{rad}}\right\rangle}{\left[k_{\mathrm{em}} k_{\mathrm{rad}}\right]} \sum_{\substack{\text { color } \\ \text { spin }}} \mathcal{A}_{+}^{(n)} \mathcal{A}_{-}^{(n) *}\right\}
$$

Constructing Subtraction Terms

Real subtraction: Factorization in the soft and collinear limit

$$
\left|\mathcal{A}^{(n+1)}\left(\Phi_{n+1}\right)\right|^{2} \rightarrow \mathcal{D}_{\mathcal{I}} \otimes\left|\mathcal{A}^{(n)}\left(\Phi_{n}\right)\right|^{2}
$$

\otimes : Convolution over spin and color.

Soft subtraction involves color-correlated matrix elements:
$\mathcal{B}_{k l} \sim-\sum_{\substack{\text { color } \\ \text { spin }}} \mathcal{A}^{(n)} \overrightarrow{\mathcal{Q}}\left(\mathcal{I}_{k}\right) \cdot \overrightarrow{\mathcal{Q}}\left(\mathcal{I}_{l}\right) \mathcal{A}^{(n) *}$,
with
$\overrightarrow{\mathcal{Q}}(\mathcal{I})=\left\{t^{a}\right\}_{a=1}^{8},\left\{-t^{a T}\right\}_{a=1}^{8},\left\{T^{a}\right\}_{a=1}^{8}$

Collinear subtraction involves spin-correlated matrix elements:

$$
\mathcal{B}_{+-} \sim \operatorname{Re}\left\{\frac{\left\langle k_{\mathrm{em}} k_{\mathrm{rad}}\right\rangle}{\left[k_{\mathrm{em}} k_{\mathrm{rad}}\right]} \sum_{\substack{\text { color } \\ \text { spin }}} \mathcal{A}_{+}^{(n)} \mathcal{A}_{-}^{(n) *}\right\}
$$

What an automated NLO (+FKS) calculation must do

- $N+1$-particle flavor configurations must be constructed from N-particle configurations
- The set of singular regions, \mathcal{I} must be generated and mappings \mathcal{S}_{α} computed
- Appropriate $N+1$-particle phase spaces must be generated
- In addition to the Born matrix element, real and virtual amplitudes, as well as color- and spin-correlated Born matrix elements, must be computed.
- The above ingredients should be combined in a parton shower matching or merging procedure
- Ideally, user responsibility is zero

What an automated NLO (+FKS) calculation must do

- $N+1$-particle flavor configurations must be constructed from N-particle configurations \checkmark
- The set of singular regions, \mathcal{I} must be generated and mappings \mathcal{S}_{α} computed \checkmark
- Appropriate $N+1$-particle phase spaces must be generated \checkmark
- In addition to the Born matrix element, real and virtual amplitudes, as well as color- and spin-correlated Born matrix elements, must be computed. \checkmark
- The above ingredients should be combined in a parton shower matching or merging procedure $\sqrt{ }$
- Ideally, user responsibility is zero $\sqrt{ }$

NLO in WHIZARD

Phase space:

- Construct Born kinematics as usual
- Radiation phase space parameterized through $\xi=\frac{2 E_{\mathrm{rad}}}{\sqrt{s}}, y=\cos \theta$ and ϕ \rightarrow Construct real phase space for each emitter

Integration:

- Individual component for Born, real-subtracted and virtual-subtracted matrix elements
- Integration either performed separately for each component or over the sum of all

Matrix elements:

- Virtual amplitudes computed by GoSam [6. Cullen et.al., axivi:1040.7096]
- $\mathcal{B}_{k l}, \mathcal{B}_{+-}$computed by GoSam
- $\mathcal{B}_{k l}$: For some processes with WHIZARD / O’Mega
Possible Constellations:

	$\mathcal{R}_{\text {tree }}$	$\mathcal{B}_{k l}$	\mathcal{B}_{+-}	\mathcal{V}
O'Mega	\bigcirc	\bigcirc	\bigcirc	\bigcirc
GoSam	\bigcirc	\bigcirc	\bigcirc	\bigcirc

O: Computation possible
O: Computation possible for some processes
O: Computation not possible (so far)

Proof of Concept - Total Cross Sections

Simplest Process: $e^{+} e^{-} \rightarrow q \bar{q}$, with $\left(\sigma^{\mathrm{NLO}}-\sigma^{\mathrm{LO}}\right) / \sigma^{\mathrm{LO}}=\alpha_{s} / \pi$ for massless quarks.
\rightarrow Benchmark Process!
Total cross section for the process $e^{+} e^{-} \rightarrow u \bar{u}, \alpha_{s}$ fixed

Proof of Concept - Total Cross Sections

- More complicated processes have been evaluated:
- $e^{+} e^{-} \rightarrow t \bar{t}$
- $e^{+} e^{-} \rightarrow q \bar{q} l^{+} l^{-}$
- $e^{+} e^{-} \rightarrow q \bar{q} \nu_{l} l^{+}$
- $e^{+} e^{-} \rightarrow q \bar{q} g$
- Cross-checks with MadGraph5_aMC@NLO passed
- Feature is contained in the current release version 2.2.5 of WHIZARD

Total cross section for the process

$$
e^{+} e^{-} \rightarrow t \bar{t}, m_{t}=173 \mathrm{GeV}
$$

(1) NLO Calculations in Event Generators
(2) Parton Shower Matching with the POWHEG Method

The POWHEG approach

Problem: Soft gluon emissions before a hard emission are $\mathcal{O}(1)$!

- Reason: $\left|\mathcal{M}_{\text {soft }}\right|^{2} \sim \frac{1}{k_{T}^{2}} \rightarrow \log \frac{p_{T}^{\text {max }}}{p_{T}^{\min }}$ after phase-space integration \rightarrow Large logarithms!
- Smallness of α_{s} is compensated by this logarithm: $\alpha_{s} \log \frac{p_{T}^{\max }}{p_{T}^{\min }} \sim 1$
$\rightarrow \mathrm{ME}+$ Parton Shower must take this configurations into account. POWHEG [p. Nason, hep-ph/0409146] : Hardest Emission First!

The POWHEG approach

POWHEG matching proceeds in two steps:

1. Generate events according to the distribution

$$
d \sigma=\bar{B}\left(\Phi_{n}\right)\left[\Delta_{R}^{\mathrm{NLO}}\left(p_{T}^{\min }\right)+\Delta_{R}^{\mathrm{NLO}}\left(k_{T}\right) \frac{R\left(\Phi_{n+1}\right)}{B\left(\Phi_{n}\right)} d \Phi_{\mathrm{rad}}\right],
$$

with the complete NLO matrix element

$$
\bar{B}\left(\Phi_{n}\right)=B\left(\Phi_{n}\right)+V\left(\Phi_{n}\right)+\int d \Phi_{\mathrm{rad}} R\left(\Phi_{n+1}\right)
$$

and the modified Sudakov form factor

$$
\Delta_{R}^{\mathrm{NLO}}\left(p_{T}\right)=\exp \left[-\int d \Phi_{\mathrm{rad}} \frac{R\left(\Phi_{n+1}\right)}{B\left(\Phi_{n}\right)} \theta\left(k_{T}\left(\Phi_{n+1}\right)-p_{T}\right)\right],
$$

2. Generation of the hardest emission occurs at the scale $p_{T}^{\max }$. Shower the generated events, imposing a veto $p_{T}^{\max }>p_{T}$ for all emissions

Positive Weights

Consider the POWHEG formula

$$
d \sigma=\bar{B}\left(\Phi_{n}\right)\left[\Delta_{R}^{\mathrm{NLO}}\left(p_{T}^{\mathrm{min}}\right)+\Delta_{R}^{\mathrm{NLO}}\left(k_{T}\right) \frac{R\left(\Phi_{n+1}\right)}{B\left(\Phi_{n}\right)} d \Phi_{\mathrm{rad}}\right]
$$

Sign of Weights:

- Determined by sign of \bar{B}
- $\bar{B}<0$ if the virtual and real terms are larger in magnitude than the Born contribution.
\rightarrow should not happen in perturbative regions!
- Therefore, $\bar{B}>0$ for all events

POWHEG matching produces events with positive weights
(POWHEG = Positive Weight Hardest Emission Generator)
Very convenient feature for performance of experimental applications

$e^{+} e^{-} \rightarrow u \bar{u}$ at NLO matched to Parton Shower

WHIZARD now has its own implementation of the POWHEG method

$e^{+} e^{-} \rightarrow u \bar{u}$ at NLO matched to Parton Shower

More on WHIZARD + POWHEG on Tuesday! \rightarrow Bijan Chokoufé

Conclusion \& Outlook

- NLO-calculations for final-state QCD corrections are currently an experimental feature available in the current release
- Experimental POWHEG matching is present and will be added to the next release of WHIZARD

Plans for the future

- Validation of results for higher particle multiplicities
- NLO-treatment of hadron collisions; Electroweak corrections
- Modular structure of WHIZARD could allow for the inclusion of other subtraction/matching schemes (MC@NLO, Nagy-Soper?)

What are your wishes?

Which processes are you especially interested in? How would you like to control NLO-computations?

SINDARIN - Example

Scripting INtegration, Data Analysis, Results display and INterfaces

```
#Sindarin script for the production of quarks in electron-positron
collisions at NLO
#Set some particle properties, process flags etc.
mtop = 137.1 GeV
wtop = 0 # Zero top width for on-shell production
.....
process lo = E1, e1 => t, T #Define processes
process nlo1 = E1, e1 => t, T {nlo_calculation=''Full''}
# Define plots
plot lineshape_lo {x_min = 380 GeV x_max = 800 GeV }
plot lineshape_nlo1 {x_min = 380 GeV x_max = 800 GeV }
# Loop over CMS energies and record xsection
scan sqrts = ((360 GeV => 450 GeV /+ 5 GeV),
(450 GeV => 800 GeV /+ 25 GeV))
integrate (lo) iterations=5:5000:''ggw',
record lineshape_lo (sqrts, integral (lo) / 1000)
integrate (nlo1) {iterations=5:5000:''gw''}
record lineshape_nlo1 (sqrts, integral (nlo1) / 1000)
....(Histogram compilation and plotting options)
```


Available Models

MODEL TYPE	with CKM matrix	trivial CKM
Yukawa test model	---	Test
QED with e, μ, τ, γ	---	QED
QCD with d, u, s, c, b, t, g	---	QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge couplings	SM_ac_CKM	SM_ac
SM with Hgg, $H \gamma \gamma, H \mu \mu$	---	SM_Higgs
SM with charge 4/3 top	---	SM_top
SM with anomalous top couplings	---	SM_top_anom
SM with K matrix	---	SM_KM
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos	---	MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models	---	PSSSM
Littlest Higgs	---	Littlest
Littlest Higgs with ungauged $U(1)$	---	Littlest_Eta
Littlest Higgs with T parity	---	Littlest_Tpar
Simplest Little Higgs (anomaly-free)	---	Simplest
Simplest Little Higgs (universal)	---	Simplest_univ
SM with graviton	---	Xdim
UED	---	UED
SM with Z^{\prime}	---	Zprime
"SQED" with gravitino	---	GravTest
Augmentable SM template	---	Template

Observables

The Thrust observable is defined as

$$
T=\max _{|\vec{n}|=1} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum_{i}\left|\vec{p}_{i}\right|} \in[1 / 2,1]
$$

- Two back-to-back jets: $T=1$
- Spherically symmetric distribution: $T=\frac{1}{2}$
$\rightarrow T \neq 1$ implies deviation from 2-jet structure
Further observables

$$
\begin{aligned}
T_{\text {major }} & =\max _{\left|\vec{n}^{\prime}\right| \mid 1, \vec{n}^{\prime} \vec{n}=0} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}^{\prime}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}, \\
T_{\text {minor }} & =\frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}^{\prime \prime}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}, \quad \text { with } \quad \tilde{\mathrm{n}}^{\prime \prime} \tilde{\mathrm{n}}=\tilde{\mathrm{n}}^{\prime \prime} \tilde{\mathrm{n}}^{\prime}=0 \\
\text { Oblateness } & =T_{\text {major }}-T_{\text {minor }}
\end{aligned}
$$

References

POWHEG

[1] P. Nason, "A New Method for Combining NLO QCD with Shower Monte Carlo Algorithms", JHEP 0411, hep-ph/0409146
[2] S. Frixione et. al., "Matching NLO QCD Computations with Parton Shower Simulations: the POWHEG Method", JHEP 0711, arXiv:0709.2092.
[3] S. Alioli et. al., "A general Framework for implementing NLO Calculations in Shower Monte Carlo Programs: the POWHEG BOX", JHEP 1006, arXiv:1002.2581

FKS

[4] S. Frixione, "A General Approach to Jet Cross Sections in QCD", Nucl.Phys. B507, hep-ph/9706545.
[5] R. Frederix et. al. "Automation of NLO computations in QCD: The FKS subtraction", JHEP 0910, arXiv:0908.4272

