W. Kilian WHIZARD Workshop Scope 2nd WHIZARD For

The Scope of this Workshop

Wolfgang Kilian

U Siegen

2nd WHIZARD Forum, Würzburg, March 2015

Forum Focused on the WHIZARD Monte-Carlo Code

Monte-Carlo simulations of particle collisions are involved in nearly any study or analysis in HEP.

The interesting physical effects are complicated – analytical calculations rarely sufficient or feasible

theory predictions

and, likewise, for

data interpretation

MC tools are most successful and worth the effort if they are universally applicable:

- large set of processes
- all relevant effects
- interfaced to common representation of data
- convenient to use
- ⇒ Scope of WHIZARD

The Scope of WHIZARD

WHIZARD started as a theory tool: numerical evaluation of typical electroweak processes (1999)

but has become useful + could be further developed to cover a wide range of phenomena: ILC and LHC, others

Applications and development reflected in growing community of users and developers

⇒ WHIZARD forum

First WHIZARD forum: DESY 2013

Second WHIZARD forum: Würzburg 2015

WHIZARD is not specifically funded as a project. This workshop was made possible by you (the participants) and:

- Helmholtz alliance "Physics at the Terascale"
- SFB 676 "Particles, Strings, and the Early Universe"
- University of Würzburg

WHIZARD is not specifically funded as a project. This workshop was made possible by you (the participants) and:

- Helmholtz alliance "Physics at the Terascale"
- SFB 676 "Particles, Strings, and the Early Universe"
- University of Würzburg
- Balthasar Neumann

Going beyond regular exchange (e-mail, personal, conferences) between and within user and development teams:

International WHIZARD Forum

- ► Forum for common topics, gather experience and criticism
- Identify areas where WHIZARD is successful, to further focus and improve the software and its applications
- Identify important issues where the program is insufficient but can be enhanced
- Identify new topics that could also be covered by WHIZARD
- Discuss and set priorities for developers and users
- Get involved!

WHIZARD is intended for a variety of collider-physics applications.

To remain useful, programs have to be kept in line with the state of the art of theoretical calculations and with experimental standards.

WHIZARD in the MC world

WHIZARD is intended for a variety of collider-physics applications.

To remain useful, programs have to be kept in line with the state of the art of theoretical calculations and with experimental standards.

(Also: need several independent calculational tools, analogous to independent experiments)

- calculations complicated, no fool-proof algorithms
- independent algorithms, independent implementations
- different models and approximations
- user support and flexibility

WHIZARD is intended for a variety of collider-physics applications.

To remain useful, programs have to be kept in line with the state of the art of theoretical calculations and with experimental standards.

(Also: need several independent calculational tools, analogous to independent experiments)

- calculations complicated, no fool-proof algorithms
- independent algorithms, independent implementations
- different models and approximations
- user support and flexibility

Conversely: WHIZARD as a framework/environment for dedicated codes and tools

WHIZARD: Core Layer

- + Amplitudes (OMega): fast tree amplitudes for arbitrary $1 \to n$ and $2 \to n$ processes, arbitrary perturbative models
- WHIZARD core: multi-channel phase space parameterization and evaluation
- + VAMP multichannel MC integration (VEGAS) over the unit hypercube (including event unweighting)

WHIZARD: Core Layer

- + Amplitudes (OMega): fast tree amplitudes for arbitrary $1 \rightarrow n$ and $2 \rightarrow n$ processes, arbitrary perturbative models
- WHIZARD core: multi-channel phase space parameterization and evaluation
- + VAMP multichannel MC integration (VEGAS) over the unit hypercube (including event unweighting)

With WHIZARD 2.2, the modules are represented as abstract entities and can be exchanged with alternative implementations.

- Model definitions and interface to FeynRules or SARAH for BSM models
- + Process definition, evaluation, steering, mixing
- Dedicated code for specific processes (tt and electroweak)
- Interfaces and built-in code for initial state structure: lepton and hadron colliders
- Interfaces and built-in code for final state structure: decays, shower, hadronization
- + Event output formats

- + Sindarin as a language for expressions (cuts, weights), simple analysis (plots, histograms) and steering (parameters, definitions, scans, I/O)
- + Stand-alone program with options
- + Library interface, callable from Fortran, C, C++, Python, ...

New & Current Developments

- GoSam interface for NLO and independent implementation of PowHEG algorithm (shower/NLO matching)
- $+\,$ Interface to NLO and NRQCD higher-order code for the $tar{t}$ threshold
- + Unitary, generic simplified models for high-energy electroweak interactions (if they are not SM)
- + Alternative, fast ME code: Omega Virtual Machine

vvi ne, a contraro dosign

Flexible program structure: object-oriented design patterns (parton shower, beam structure, event transform, event I/O, integrator, phase space, ...)

 $\begin{array}{c} \textbf{abstract event transform} & \leftarrow \textbf{PYTHA shower} \\ & \leftarrow \textbf{WHIZARD shower} \\ & \leftarrow \textbf{decay module} \\ & \updownarrow \\ & \leftarrow \dots \end{array}$ Other parts of the program

Realization straightforward in Fortran, but requires 2003 standard.

⇒ WHIZARD code structure (2.1+)

Project Issues

Universal MC generators are becoming full-scale software projects (> 100k LOC, > 10 years life cycle, distributed development teams)

For WHIZARD, we had to learn and set up

- → Portable multi-platform configuration
- ⇒ Revision control and release tags
- ⇒ Automated test suite
- ⇒ Continuous integration
- ⇒ Bug tracker

Revised program design

⇒ facilitate new contributions and collaboration

- Status of machines, experiments, analysis, and studies that determine application and development of MC
- Improve description of collider environment (ILC) for more detailed studies

- Status of machines, experiments, analysis, and studies that determine application and development of MC
- Improve description of collider environment (ILC) for more detailed studies
- Description of QCD, perturbative and non-perturbative effects that modify elementary processes
- NLO, where tree-level is insufficient. NLO QCD and NLO EW for ILC
- Interfacing codes that provide calculations that WHIZARD doesn't support, or alternatives.

- Status of machines, experiments, analysis, and studies that determine application and development of MC
- Improve description of collider environment (ILC) for more detailed studies
- Description of QCD, perturbative and non-perturbative effects that modify elementary processes
- ▶ NLO, where tree-level is insufficient. NLO QCD and NLO EW for ILC
- Interfacing codes that provide calculations that WHIZARD doesn't support, or alternatives.
- Phenomenological description of BSM

- Status of machines, experiments, analysis, and studies that determine application and development of MC
- Improve description of collider environment (ILC) for more detailed studies
- Description of QCD, perturbative and non-perturbative effects that modify elementary processes
- NLO, where tree-level is insufficient. NLO QCD and NLO EW for ILC
- Interfacing codes that provide calculations that WHIZARD doesn't support, or alternatives.
- Phenomenological description of BSM
- Optimization of MC generation

- Status of machines, experiments, analysis, and studies that determine application and development of MC
- Improve description of collider environment (ILC) for more detailed studies
- Description of QCD, perturbative and non-perturbative effects that modify elementary processes
- NLO, where tree-level is insufficient. NLO QCD and NLO EW for ILC
- Interfacing codes that provide calculations that WHIZARD doesn't support, or alternatives.
- Phenomenological description of BSM
- Optimization of MC generation
- User Interface

WS Overview

Machines and Experiments

LHC resuming, ILC approaching realization, new multi-TeV projects

- ⇒ precision in LHC analyses
- ⇒ new, more detailed physics studies
- ⇒ MC reference event samples
- ⇒ ILC beam description
- ⇒ Unitarity and modelling BSM

Beyond the Standard Model

No scenario is preferred.

- ⇒ Automatic model evaluation for perturbative (Lagrangian) models
- ⇒ Vector-Boson Scattering (within effective theory and beyond)
 - ⇒ new strong interactions

Beyond Tree Level

Accessing and incorporating NLO for realistic simulation.

- ⇒ Automatic NLO calculation in QCD
- ⇒ NLO QCD with external-code interface for WHIZARD
- \Rightarrow QCD at threshold and beyond for $tar{t}$ production
- ⇒ Status and prospects for NLO electroweak

Final State

Radiation, decays, hadrons

- ⇒ Shower modules and matching
- ⇒ Spin correlations
- ⇒ Hadronization interface

Efficiency

Fast evaluation and event generation

- ⇒ New algorithm for tree-level matrix elements (OVM)
- ⇒ Parallel computing (OpenMP, MPI, ...)
- ⇒ Further ideas

Looking forward ...

Looking forward ...

...to a successful workshop!

