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Motivation for Tree Level Matrix Elements (MEs)

13 jet event with pT,min = 50 GeV at√
s = 8 TeV of 12 fb−1 set (anti-kT; R = 0.5)

[CMS–EXO–12–009]

I Need MEs for very high multiplicities
to test the SM and its possible
extensions

I MEs at tree level are part of every
simulated event:

I Correction of the shower to account
for interferences (Merging)

I Real emissions as part of the higher
order computations:
NkLO implies up to k additional
particles

I Automatized, efficient ME generators work in principle for every
multiplicity: Alpha [Caravaglios, Moretti 1995], Helac [Kanaki and Papadopoulos 2000],
O’Mega [Moretti, Ohl, and Reuter 2001], Comix [Gleisberg and Höche 2008], . . . (X?)
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Motivation for a Virtual Machine (VM)

I Direct numerical implementations of recursion relations are usually
less flexible.
Only recently the first program of this type has been extended to
more general theories [Höche, Kuttimalai, Schumann, and Siegert 2014]

I Popular (traditional) method to combine
fast code + full flexibility

= meta programming
I Determine the minimal, algebraic expression in a high-level language

like Form, Mathematica, OCaml or Python

I Evaluate this in a numerical fast language like C or Fortran

I Examples: MadGraph [Alwall et al. 2011],
FormCalc [Hahn and Pérez-Victoria 1999], GoSam [Cullen et al. 2014],
O’Mega . . .

I E However, analytic expressions of complicated multi-jet events can easily
reach gigabyte sizes E
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Motivation for a Virtual Machine (VM)

I 2g → 6g process gives for all color-flows [Kilian, Ohl, Reuter, and Speckner 2012]

∼ 4GB Fortran code.
Code of this size either fails to compile and link or needs several days

I No promising path to ever higher multiplicities . . .

I Possible solution: With a virtual machine (VM) you circumvent the
compilation of the large source code completely

I A VM is furthermore simple to implement and to parallelize and offers
similar performance as compiled code [Chokoufe Nejad, Ohl, and Reuter 2014]

I A VM is in our context no OS emulation or similar stuff
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What is a VM?

I A VM is in our context compiled program (interpreter)

I It is able to read instructions from disk and perform an arbitrary
number of operations of a finite instruction set

I Instructions can be saved as byte code encoded in mere numbers in
a simple ASCII file

I Imagine the VM as a machine that is given registers and
instructions what to do with them

I Just like a CPU but on a higher level as the registers are e.g. arrays
of momenta and wave functions and the instructions scalar products

General Aspects A Virtual Machine for O’Mega 7/26



What to put in the Byte Code?

I To construct the VM dynamically, we have to supply a header with
the numbers of objects that have to be allocated

I Optionally we can give version numbers to specify the physical
model, comments how the byte code was created and tables with
precomputed properties like information over spin, color and flavor

I This is followed by the body of instructions with the nontrivial
information how to compute a process

I The first object of an instruction is the opcode that specifies which
operation is executed. This is usually followed by adresses, e.g.

1 7 4 3 ⇔ momentum(7) = momentum(4) + momentum(3)
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Interpreter

I Simple program that reads at first the byte code into memory

I Loops over instructions with a decode function and given input
values

I Translation of the byte code to machine code is fast compared to
the execution (multiple complex valued scalar products)

I Adaption of the interpreter to a new kind of "problem" requires
I Specification of static informations
I Writing the switch/case statements of the decode function

I VM is quickly compiled once. Handy to check many small
processes quickly and mandatory for very large ones
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Organisation of the Parallelization in the VM

I Group instructions into
building blocks to
minimize the number of
synchronization points

I Divide the computation
into levels

I All building blocks
commute in every level,

i.e. only one thread is
writing to a register per
level
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Parallelization in high energy physics

I We usually assume that we can trivially parallelize our
computations by computing multiple phase space points at once
(phase space = momenta, flavor, helizity, color)

I In extreme computations, the objects of a single phase space point
might already fill up your cache

I Trying to compute multiple points at once can induce
traffic jam between RAM and CPU and
might be slower than single core performance

I The VM is a straightforward implementation of the
parallel computation of a single phase space point
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A Virtual Machine for O’Mega
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Optimizing Matrix Element Generator

I O’Mega [Moretti, Ohl, and Reuter 2001] computes amplitudes with 1 particle off
shell wave functions W

diagrams lead to a loss of numerical precision, stressing further the need for
eliminating redundancies.

Due to the large number of processes that have to be studied in order
to unleash the potential of modern experiments, the construction of these
representations must be possible algorithmically on a computer and should
not require human ingenuity for each new application.

O’Mega [1] is a compiler for tree-level scattering amplitudes that satisfies
these requirements. O’Mega is independent of the target language and can
support code in any programming language for which a simple output module
has been written. To support a physics model, O’Mega requires as input only
the Feynman rules and the relations among coupling constants.

Similar to earlier numerical approaches [2, 3], O’Mega reduces the growth
in calculational effort from a factorial of the number of particles to an ex-
ponential. The symbolic nature of O’Mega, however, increases its flexibility.
Indeed, O’Mega can emulate both [2, 3] and produces code that is empirically
at least twice as fast.

2 1POWs And Keystones

One Particle Off-shell Wave functions (1POWs) are obtained from Greens-
functions by applying the LSZ reduction formula to all but one line:

W q1,... ,qm
p1,... ,pn

(x) = �φ(q1), . . . , φ(qm); out Φ(x) φ(p1), . . . , φ(pn); in� . (1)

The 1POW W q,q′

p (x) = �φ(q), φ(q′); out Φ(x) φ(p); in� in lowest order of φ3-
theory, is given—for illustration—by

x

p q

q′ =

x

p q

q′ +

x

p q

q′ +

x

p q

q′ (2)

At tree-level, the set of all 1POWs for a given set of external momenta can
be constructed recursively [4]

x

n =
�

k+l=n

x

k l
, (3)

2

I On tree-level (and 1-loop level, [→ Recola talk by A. Denner])
you can construct the set of all currents recursively

I Finally you need some keystones K to replace the sum over Feynman
diagrams, e.g.

F(n)∑
i=1

Di =
P(n)∑

k,l,m=1
K3

fkflfm
(pk , pl , pm)Wfk (pk)Wfl (pl)Wfm (pm)

I The calculation froms a Directed Acyclical Graph (DAG), optimized by
O’Mega to obtain the minimal number of connections
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Recap of the infrastructure

O'Mega

0 0 0 0 0 0 0 0
1 0 0 5 1 2 0 0
1 0 0 6 1 3 0 0
11 0 1 1 1 0 0 0
11 0 1 3 1 0 0 0
12 0 1 2 3 0 0 0
13 0 1 2 4 0 0 0
13 0 1 4 4 0 0 0
14 0 1 1 2 0 0 0
0 0 0 0 0 0 0 0
34 0 0 2 5 0 2 0
-1 1 -1 2 1 3 0 0
35 0 0 3 5 0 2 0
-1 1 -1 3 1 1 0 0
34 0 0 1 6 0 2 0
-1 1 -1 1 2 1 0 0
35 0 0 4 6 0 2 0
-1 1 -1 4 2 3 0 0
0 0 0 0 0 0 0 0
2 -1 0 1 1 0 0 0
-1 1 -1 3 2 4 0 0
-1 -1 -1 1 1 4 0 0
2 -1 0 2 1 0 0 0
-1 1 -1 2 2 2 0 0
-1 -1 -1 4 1 2 0 0

OVM
interpreter

Phase space point

matrix element
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Byte Code Creation in O’Mega / OCaml

I Feynman rules form a finite number of instructions and are
therefore good candidates for the translation into byte code

I OCaml can compare abstract objects like wave functions, momenta
or amplitudes

I Fortran arrays identify their objects via their index

I Take the set of objects and apply a mapping to natural numbers
using the given order 2.2. BYTECODE PRODUCTION IN O’MEGA

code coupl coeff lhs rhs1 rhs2 rhs3 rhs4

ADD MOMENTA 0 0 p lhs p rhs1 p rhs2 p rhs3 0
LOAD X PDG 0 wf outer ind 0 0 amp
PROPAGATE Y PDG width wf p 0 0 amp
FUSE Z coupl coeff lhs rhs1 rhs2 rhs3 rhs4
CALC BRAKET sign 0 amp sym 0 0 0

Table 2.1.: HepBC cheat sheet. Each instruction line consists of eight variables which
have a different meaning depending on the first control code. In general, the objects on
the left hand side (lhs) is constructed from the right hand side (rhs). The possible values
for X, Y and Z can be seen in Eq. (2.2.1). The value for width indicates which type of
width is used while its value and the one of the mass is inferred from the PDG code.
outer ind denotes spin and momentum index of the wave function.

2.2. Bytecode production in O’Mega

The bytecode has been designed in a way such that it is in principle human readable

if the meanings of the numbers are known. Tab. 2.1 summarizes the basic operations

which are needed. Together with the sets of external particles X, propagators Y and

fusions Z

X ∈
�
U, UBAR, V, VBAR, VECTOR, CONJ VECTOR

�

Y ∈
�
PSI, PSIBAR, UNITARITY, FEYNMAN, COL FEYNMAN

�
(2.2.1)

Z ∈
�
VEC PSIBAR PSI, PSI VEC PSI, PSIBAR PSIBAR VEC,GLU GLU GLU, WFS V4

�
,

the language of the VM for QCD is defined. This very limited set of instructions

as well as the objects in a calculation can each be identified unambiguously with an

integer. The explicit values for the control codes of Tab. 2.1 can be found in the source

code of the OVM [Cho13]. The construction of momenta with up to three summands is

to some extent arbitrary but seems to be a sweet spot between caching intermediate

results and minimizing lines of bytecode, thereby decode calls and memory. Note,

that the information about amp in LOAD X and PROPAGATE Y is only useful for

color MC and was not available in the native Fortran code. At the top of the HepBC

file, a header notes the version of the VM and model library to be used as well as

the numbers of objects which have to be allocated like momenta and wave functions.

The appropriate model library has to specify mass, width and coupl arrays which

hold the numeric values for the different types of particles and interactions. While

for particles the Particle Data Group particle codes (PDG) [Ber12] can be used to

identify the array entries, for the couplings an arbitrary but fixed ordering has to be

5
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Performance of byte code generation

I Byte code can be faster produced using less RAM and is smaller
than native Fortran source code

I For gg → 6g
memory requirements are reduced from 2.17GB to 1.34GB and
the time to produce it from 11min 52 s zu 3min 35 s2. O’MEGA VIRTUAL MACHINE

process BC size Fortran size tcompile

gg → gggggg 428 MB 4.0 GB -
gg → ggggg 9.4 MB 85MB 483(18) s
gg → qq̄q�q̄�q��q̄��g 3.2 MB 27MB 166(15) s
e+e− → e+e−e+e−e+e−e+e−e+e− 0.7 MB 1.9 MB 32.46(13) s

Table 2.2.: The compilation times were measured on a laptop with i7-2720QM,
6 GB PC3-10600 DDR3-RAM and a Samsung 840 SSD. The 2g → 6g process fails to
compile due to lacking memory.

would be that the Fortran compiler leads to inefficient code compared to the line by

line decoding in terms of a VM. There is though no clear evidence for this.
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Figure 2.4.: The execution time per phase space point tpsp of the OVM with one and
four cores as well as the native Fortran code, normalized for each process to the native
Fortran code. The addtional overhead associated with the creation of a VM, i.e. reading
the process from disc, allocation of memory and saving tables to memory, induces slightly
slower excecution times for the 2 → 2 process. However, already for three particles in
the final state, the improved memory layout can compensate this and for five particles
the OVM is more than a factor of two faster. This benchmark has been performed with
mere calls to calculate the full amplitude while no color sum is performed in each phase
space point.

2.5.1. Comparison to MadGraph

Since MadGraph[AHM11] is a popular choice for the generation of tree level amplitudes,

a benchmark with OVM seems appropriate.

12

I For smaller processes no big changes
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Parallelization in recursive computations

1 2 3 4 5 6 7 8 9 10

1 2 5 6 7 8 9 10

5 6 7 81 2 3 4

1 2 3

Identify a level by counting external momenta

Example of one tree of a large set
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Speed of matrix elements - First Look

2 gl 3 gl 4 gl 5 gl
Final state

0.0

0.2

0.4
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t p
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to
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Old Fortran Code
OVM with 1 core
OVM with 4 cores

[gfortran 4.7, Intel i7-2720QM @ 2.20GHz]
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Speed of matrix elements - Now with two compilers

4 5 6 7
multiplicity n
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gfortran-O2, compiled
gfortran-O2, VM

ifort-O3, compiled
ifort-O3, VM
ifort-O2, compiled
ifort-O2, VM

2→ (n− 2)g amplitudes
[gfortran 4.7, ifort 14, Intel Xeon

E5-2440 @ 2.40GHz]

Both VMs improve with
increasing multiplicity

ifort has large offset
for the VM,
could be solved with
profile-guided
optimization

ifort fails to compile
the 2→ 5 gluon
amplitude
(even with -O0)
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Speed of matrix elements - Explaining the Scaling
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uu → e+e−nj amplitudes

Same scaling
behavior

Virtualization costs
are constant

VM does loop over
levels and
instructions therein

Source code is like a
unrolled version of
this loop

Double loop has
higher probability to
keep decode function
in instruction cache
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Speed of matrix elements
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e+e−→ nγ amplitudes

Improvements for
VM are smaller with
increasing multiplicity
for pure QED

Less to be done on
more wave functions
per level

Unrolled version can
gain more from data
prefetching

Note: e+e− → 9γ
gives 125KiB,
gg → 4g gives
269KiB
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Quantitative Analysis of the Parallelization

I Amdahl’s Law divides an algorithm into parallelizable parts p and
strictly serial parts 1− p

I The possible speedup s for a computation with n cores is then

s ≡ t(1)

t(n) = 1
(1− p) + p

n
≤ 1

1− p

I Idealized version since communication costs between cores O (n)
have been neglected in the denominator

I Compare parallel evaluation of the amplitude (A) with the
computation of multiple phase space points at once (PS)
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Quantitative Analysis of the Parallelization
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General Aspects A Virtual Machine for O’Mega 23/26



Quantitative Analysis of the Parallelization
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Quantitative Analysis of the Parallelization
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Paving the way for matrix elements on GPUs?

I A VM could be the perfect tool for computations on the GPU, as it
avoids the finite kernel size problem

I Previous studies show degrading in performance with growing
number of external particles and have to be split in smaller
programs [Hagiwara et al. 2013]

I Decode function remains small for arbitrary processes.
Efficiency of memory management may remain an obstacle

I You could transfer instructions and VM once to the GPU, to reduce
communication costs

I For event generation, only send the outer quantum number to the GPU
and receive the amplitude.
Phase space integration can happen on the CPU
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How to use it?

$method = ovm # omega

Implemented since Whizard 2.2.3 and directly usable for
2HDM_CKM, 2HDM, HSExt, QCD, QED,
SM_CKM, SM_Higgs, SM, Zprime

More models with general Lorentz structures or upon request
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Summary

I A virtual machine allows to compute processes directly without the
need to compile for hours/days

I Execution times can be faster or slower than compiled code but
is always in the same order of magnitude

I Implementation is based on tree-level matrix elements but
the idea is applicable in general

I Parallelization of single phase space points might be necessary for
very complex processes and is straightforward with the VM
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Implementation of parallelization

subroutine iterate_instructions (vm)
type(vm_t), intent(inout) :: vm
integer :: instruction, level
!$omp parallel
do level = 1, vm%N_levels - 1

!$omp do schedule (static)
do instruction = vm%levels (level) + 1, vm%levels (level + 1)

call decode (vm, instruction)
end do
!$omp end do

end do
!$omp end parallel

end subroutine iterate_instructions

But also the color sum had to be parallelized via
!$omp parallel do reduction (+: amp2)
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Byte code in detail
Bytecode file generated automatically by O'Mega for OVM.
Do not delete any lines. You called O'Mega with
  /home/bijan/Dropbox/MasterThesis/Build/bin/omega_QCD.opt -scatter "u ubar -> d dbar"

N_mom N_prt N_in N_out N_amp N_coupl N_hel N_cflow N_cind N_cfactors
5 4 2 2 2 3 16 2 2 4 
N_flv N_psi N_psibar N_vec
1 4 2 2 0 0 0 0 0 0 
Spin states table
-1 -1 -1 -1 
-1 -1 -1 1 
-1 -1 1 -1 
-1 -1 1 1 
-1 1 -1 -1 
-1 1 -1 1 
-1 1 1 -1 
-1 1 1 1 
1 -1 -1 -1 
1 -1 -1 1 
1 -1 1 -1 
1 -1 1 1 
1 1 -1 -1 
1 1 -1 1 
1 1 1 -1 
1 1 1 1 
Color flows table: [ (i, j) (k, l) -> (m, n) ...]
1 0 0 -1 2 0 0 -2 
2 0 0 -1 2 0 0 -1 
Color factors table: [ i, j: num den power], where i, j are the indexed color flows.
1 1 1 1 2 
1 2 1 1 1 
2 1 1 1 1 
2 2 1 1 2 
OVM instructions for momenta addition, fusions and brakets start here: 
0 0 0 0 0 0 0 0
1 0 0 5 1 2 0 0
11 1 0 1 1 0 0 1
14 1 0 1 2 0 0 1
12 1 0 2 3 0 0 1
13 1 0 4 4 0 0 1
11 1 0 2 1 0 0 2
14 1 0 1 2 0 0 2
12 1 0 2 3 0 0 2
13 1 0 3 4 0 0 2
0 0 0 0 0 0 0 0
34 1 2 1 5 0 0 2
-1 1 -1 1 1 2 0 0
35 1 2 2 5 0 0 1
-1 1 -1 2 1 1 0 0
0 0 0 0 0 0 0 0
2 -1 0 1 1 0 0 0
-1 1 -1 2 2 4 0 0
2 -1 0 2 1 0 0 0
-1 1 -1 1 2 3 0 0
0 0 0 0 0 0 0 0

du

d̄ū

1

cf = num
den N pwr
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Byte code in detail
File: /home/bijancn/Desktop/instr Page 1 of 1

OVM instructions for momenta addition, fusions and brakets start here: 
0 0 0 0 0 0 0 0
1 0 0 5 1 2 0 0
11 2 0 1 1 0 0 1
14 -2 0 1 2 0 0 1
12 -1 0 2 3 0 0 1
13 1 0 4 4 0 0 1
11 2 0 2 1 0 0 2
14 -2 0 1 2 0 0 2
12 -1 0 2 3 0 0 2
13 1 0 3 4 0 0 2
0 0 0 0 0 0 0 0
34 21 2 1 5 0 0 2
-1 1 -1 1 1 2 0 0
35 21 2 2 5 0 0 1
-1 1 -1 2 1 1 0 0
0 0 0 0 0 0 0 0
2 -1 0 1 1 0 0 0
-1 1 -1 2 2 4 0 0
2 -1 0 2 1 0 0 0
-1 1 -1 1 2 3 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

! This module mainly encapsulates the data of the OVM and provides only one
! public method. start_VM should be run once for every process.

module ovm_load

  use omp_lib
  use ovm_phasespace
  implicit none
  integer, parameter :: N_ints = 8         ! Integers in an instruction line
  integer, parameter :: N_head = 10        ! Integers in a header line

  integer, parameter :: ovm_LOAD_U = 11
  integer, parameter :: ovm_LOAD_UBAR = 12
  integer, parameter :: ovm_LOAD_V = 13
  integer, parameter :: ovm_LOAD_VBAR = 14
  integer, parameter :: ovm_LOAD_VECTOR = 15
  integer, parameter :: ovm_LOAD_CONJ_VECTOR = 16

  integer, parameter :: ovm_ADD_MOMENTA = 1
  integer, parameter :: ovm_CALC_BRAKET = 2

  integer, parameter :: ovm_PROPAGATE_PSI = 31
  integer, parameter :: ovm_PROPAGATE_PSIBAR = 32
  integer, parameter :: ovm_PROPAGATE_UNITARITY = 33
  integer, parameter :: ovm_PROPAGATE_FEYNMAN = 34
  integer, parameter :: ovm_PROPAGATE_COL_FEYNMAN = 35

  integer, parameter :: ovm_FUSE_VEC_PSIBAR_PSI = -1
  integer, parameter :: ovm_FUSE_PSI_VEC_PSI = -2
  integer, parameter :: ovm_FUSE_PSIBAR_PSIBAR_VEC = -3
  integer, parameter :: ovm_FUSE_GLU_GLU_GLU = -4
  integer, parameter :: ovm_FUSE_WFS_V4 = -5

  integer, parameter :: FULL_SUM = 101
  integer, parameter :: DISCR_MC = 103
  integer, parameter :: EXP_DISC = 200
  integer, parameter :: EXP_CONT = 201
  integer, parameter :: TRI_DISC = 210
  integer, parameter :: TRI_CONT = 211
  integer, parameter :: TRI_DISC2 = 212
  integer, parameter :: SPHERE = 221

  integer, parameter :: CRUDE = 0
  integer, parameter :: VEGAS = 1
  integer, parameter :: SUAVE = 2
  integer, parameter :: DIVONNE = 3
  integer, parameter :: CUHRE = 4

  real(kind=default), parameter :: NOT_ZERO = 1D-30
  real(kind=default), parameter :: INFTY = 1D+30

  integer :: N_instr, N_levels, N_mom, N_prt, N_in, N_out, N_amplitude, N_coupl
  integer :: N_cflow, N_cindex, N_cfactors, N_flv, N_hel, N_psi, N_psibar, N_vec
  integer, dimension(:, :), allocatable :: intblock
  integer, dimension(:), allocatable :: levels

  ! v = verbose, CMC_on = Color MC, hel_MC = type of Helicity MC
  type, public :: ovm_mode 
    logical :: v
    integer :: omp_threads
    integer :: integrator
    logical :: CMC_on
    !integer :: col_MC
    integer :: hel_MC
    integer :: rnd_col
  end type ovm_mode

  ! th=theta phases can be used instead of spin
  type, public :: vm
    type(momentum), dimension(:), allocatable :: p
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