High Resolution Si Pixel Technologies Developed for Charged Particle Tracking in Subatomic Physics

Marc Winter (IPHC-Strasbourg)

contributions: V.Re (CMOS sensors / INFN-Pavia), L.Andricek (DEPFET / MPI-Munich), M.Demarteau (3D sensors / FNAL-Chicago)

More information on Web-site of VERTEX-08, TWEPP-08 & PIXEL-08 workshops

OUTLINE

- Generic experimental requirements driving SC pixel R&D
 - ⇔ Constraints from physics goals
 ⇔ Constraints from running conditions
- Pixel technologies optimised for read-out speed and radiation tolerance constraints
 - ⇔ Hybrid pixel sensors
 ⇒ 3D sensors
- Pixel technologies optimised for spatial resolution and material budget
 - \Rightarrow CMOS sensors (1st & 2nd generation) \Rightarrow CCDs \Rightarrow DEPFETs
- The emergence of 3D (quasi-)monolithic pixel sensors
- Conclusion Perspectives

The physics potential of numerous experimental programmes in subatomic physics depends on performances achievable with SC pixel arrays

- colliders for Particle Physics (PP) : LHC \rightarrow SuperLHC ; ILC \rightarrow CLIC ; SuperB factory
- Heavy Ion Collisions (HIC) : RHIC \rightarrow (s)LHC ; FAIR

High precision pixel detectors are essential for :

- \triangleright **Discoveries** (\equiv 1st evidence of particle or phenomenon) :
 - Higgs boson
 - non-standard particles (SUSY part., extra gauge bosons, ...)
 - collective phenomena in HIC
- \triangleright Characterisation (\equiv study underlying dynamics: quantum nb, forces) :
 - particle properties : * Higgs couplings to W, Z, q, I, γ ,
 - * strength of non-standard particle decays
 - production properties : charmed mesons produced in HI collisions

Access to short Lived Particle Decays

Main challenge : identify ${\bf c}$ quark and τ^{\pm} lepton jets

 \hookrightarrow lifetime \sim O(10⁻¹²) s $\Rightarrow \beta \gamma c \tau \sim$ 100 μm

- \Rightarrow particles decay inside vacuum pipe in which beams circulate
 - \Rightarrow recontruct origin of decay products
- \Rightarrow Experimental trend : *pixellised detectors installed*

very close to the beam interaction region

- ▷ Minimal distance limitations :
 - beam pipe radius
 - beam associated backgrounds
 - density of particles produced at the IP
- Consequences on occupancy and radiation level

Conflict between physics performance driven parameters and running condition contraints :

- Physics performance : spatial resolution and material budget (+ distance to IR)
- Running conditions : read-out speed and radiation tolerance
- Moreover :
 - * limitations from maximum power dissipation compatible with running conditions and material budget
 - * limitations from highest data flow acceptable by DAS

 \Rightarrow Ultimate performance on all specifications cannot be reached simultaneously

- ▷ each facility & expt requires dedicated optimisation :
 - (\equiv hierarchy between physics requirements and running constraints)
- ▷ there is no single technology best suited to all applications
 - * explore various technological options
 - * motivation for continuous R&D (optimum is strongly time dependent)

Physics performance driven :

- thin (potentially undepleted) sensitive volume
- ILC \searrow RHIC \searrow CLIC, SuperB, FAIR
- CMOS sensors, CCDs, DEPFETs

Running conditions driven :

- "thick" depleted sensitive volume
- LHC / SLHC
- Hybrid pixel sensors, 3D sensors

Future : 3D integrated pixel devices (see also talk of Ch. De La Taille)

 \Rightarrow reduce the gap between the two main optimisation options

Pixel Technologies Adapted to Harsh Running Conditions :

• pp collisions : LHC \rightarrow SuperLHC

• HI collisions : RHIC, LHC, FAIR

Ex: ATLAS pixel requirements (G.Gaycken - Vertex-08)

- Bunch spacing : 25 ns
- Radiation hardness : 500 kGy, $10^{15} n_{eq}$ /cm² (life time)
- \bullet Coverage in pseudo rapidity : $\eta \geq$ 2.5 with 3 pixel hits
- Occupancy/BX > 0.17 hits per 320 pixel (column pair) for L = 10³⁴ cm⁻² · s⁻¹
- Efficiency > 98 %

\Rightarrow Main detector features :

- Pixel dimensions : 50x400 μm^2 (ATLAS) , 100x150 μm^2 (CMS) $~\Rightarrow~~\sigma^{transv}_{sp} \sim$ 10–15 μm
- ullet Inner radius : \sim 4–5 cm
- ullet Power dissipation : \gtrsim 0.5 W / cm 2
- Layer material budget : \sim 1–2 % X $_0$
- Total surfaces covered with pixels : up to 1.8 m^2
- Number of Pixels : several 10⁷

Hybrid Pixel Sensors

G.Gaycken - Vertex-08

Pixel Sensors for HEP

Hybrid Pixel Sensors for LHC

A Toroidal LHC ApparatuS

ILC Vertex Workshop, Menaggio, 24 April 2008

A.Andreazza - The ATLAS Pixel Detector (I)

-9-

CMS Pixel Detector

Pixel Sensors for SuperLHC

What are the conditions at sLHC?

-140

- 300 400 pile-up events at start of spill (unless luminosity levelling)
- Want to survive at least 3000 fb⁻¹ data taking
- B-layer at 37 mm:
 - ◆ ~30 tracks per cm⁻² per bunch crossing
 - $> 10^{16}$ 1 MeV n-equivalent nonionising
 - Few 10s of MGray

Radiation Dose in Inner Detectors

18

Nigel Hessey

Improvement/evolution of hybrid pixel sensors :

- Smaller CMOS feature size \Rightarrow more compact FE μ circuits
 - \Rightarrow smaller pixels \Rightarrow occupancy
- Improved sensitive volume radiation hardness
- Larger nb of pixels \Rightarrow power dissipation is an issue !

\Rightarrow Alternatives to hybrid pixels :

- Particularly in fashion : 3D sensors
- Others : 3D integrated devices (see talk of Ch. de la Taille),

3D Detector Structure

- Array of electrode columns passing through substrate
- Electrode spacing << wafer thickness (e.g. 30μm:300μm)
- Benefits

۲

- $V_{depletion} \propto (Electrode spacing)^2$
- Collection time∝ Electrode spacing
- Reduced charge sharing

Concept, Types

- Invented in 1997 S. Parker, C. Kenney, J. Segal Nucl. Instr. Meth. A, vol. 395, 328, 1997
 First produced in 1999 Stanford Nanofabrication facility
- Recent development: R&D towards experimental use
 - Improvements in micromachining make larger-scale, reliable production more feasible
 - Simplified structure: Double Sided, G. Pellegrini et al.

IEEE Trans. Nucl. Sci, vol. 54, no. 4, Aug. 2007 *Nucl. Instr. Meth. A*, vol. 592 (1), July 2008

- Application: radiation-hard detectors for Super-LHC, Synchrotrons

Single Sided Single Type Columns (semi-3D)

Single Sided Double Type Columns (classic 3D)

Double Sided Double Type Columns (new 3D)

Hawaii/Stanford/Manchester cont..

Stanford fabricated devices

Fast timing applicationsFP220 in ATLAS trigger

Most advanced radiation resultsResults for different pixel configurations

Pixel Technologies Driven by Physics Performance

- e^+e^- collisions : ILC \rightarrow CLIC , SuperB Factory
- *HI collisions : RHIC, FAIR*

- ILC \equiv next large scale accelerator after LHC : e^+e^- linear collider with c.m. energy up to 1 TeV
 - \triangleright Physics programme expected/hoped to start \gtrsim 2020
 - Emphasis on spatial resolution and material budget rather than on speed and radiation tolerance

(\gtrsim 2 orders of magnitude below LHC)

- \triangleright ILC time structure includes 5, \sim 1 ms long, "trains" made of \sim 3000 bunch crossings / second
 - \rightarrow only a few contain relevant Physics info. but all contain large amounts of Background \rightarrow remove them !

Typical Requirements for an ILC Vertex Detector

Material budget is a major concern \triangleright mandatory to ensure necessary impact resolution at low transverse momentum (\leq 1 GeV/c) \rightarrow jet flavors and electrical charge

 \Rightarrow hybdrid pixel sensors used at LHC excluded

- very thin sensors : thickness ightarrow 50 μm Si
- very light mechanical supports : < 0.1 % X $_0$
- very low material servicing (low power sensors \rightarrowtail modest cooling)
- ightarrow
 ightarro

Excellent spatial resolution :

- single point resolution \sim 2–3 μm
- double hit separation \lesssim 40 μm
- inner radius \sim 12-15 mm !
- total active surface < 1 m^2

 $\triangleright \triangleright \triangleright$ Constraints mainly driven by $\sigma_{ip} = \mathbf{a} \oplus \mathbf{b}/\mathbf{p} \cdot \sin^{3/2} \theta$

Several alternative pixel technologies & read-out architectures under devt

- sensing technologies : CCDs, CMOS sensors, DEPFETs, (Sol)
- continuous versus delayed read-out (inbetween bunch trains)

Accelerator	a (μm)	${f b}$ ($\mu m \cdot GeV$)
LEP	25	70
SLD	8	33
LHC	12	70
RHIC-II	13	19
ILC	< 5	< 10

CPCCD

- LCFI proposes: a two phase column parallel CCD sensor
- Simple idea: readout a vector instead of a matrix
- Readout time shortened by orders of magnitude

- Readout still challenging 50MHz clock for 50mm sensor
- Fast clocking implies heating and power dissipation

Proof of Principle

- Detected Fe⁵⁵ 5.9keV X-rays
- Noise analysis: 180e⁻(34°C), 65e⁻(-40°C)
- Working on noise reduction

Y. Banda, E. Devetak B.Jeffery, A. Nomerotski

- Studying various possibilities for driving CPCCD:
 IC Drive
 Transformer
- Current driver chip 25MHz

Counts

In-Situ Storage Image Sensor

- ISIS Sensor details:
 - CCD-like charge storage cells in MAPS pixel, CMOS or CCD technology
 - p+ shielding implant (or epi) forms reflective barrier
 - Designed for "burst" imaging (see Prof. Etoh http://hydraulics.web.infoseek.co.jp)
- Operational Details
 - Charge collected at photogate
 - During active period charge is periodically shifted into short CCD register
 - During readout period charge is moved to output gate and ADC

ISIS1 Test Beam: Resolution and Cluster

• Cluster Charge

F

- Hits clear: most probable = 3.9 ke-
- Peak structure caused by: noise, charge spreading over many pixels, charge lost to output structures
- Tracking Resolution
 - Using sensors 0,1,3; calculate distance to hit in sensor 2
 - Subtract effect of multiple scattering
 - Corrected resolution in "y" (short pixel direction) = $9.4\pm0.2 \ \mu m$.
 - Negligible charge sharing in "x"

Pixel Sensors for HEP

- ILC & SuperBelle (& XFEL) Option : DEPFET

DEPFET Pixel Cell

- fully depleted sensitive volume
 - fast signal rise time (~ns), small cluster szie
- internal amplification
 - large signal, even for thin devices
 - charge-to-current conversion:
 g_q = dI_d/dq = 0.5 1 nA/electron (latest production)
 scales with gate length
- Charge collection in "off" state, read out on demand
 - potentially low power device
- special technology, currently only available at the MPI Semiconductor Laboratory (MPI HLL)
- future developments:
 - improve technology for large wafer scale (*Φ*=150mm) sensors
 - main applications:
 - X-ray Astronomy (BepiColumbo, SimbolX, IXO)
 - Vertex Detetor at SuperBelle
 - candidate for the VXD at ILC and for the XFEL

halbleiterlabor

Pixel Sensors for HEP

ILC & SuperBelle Option : DEPFET

DEPFET Array - different ways for read-out

mpi halbleiterlabor

1. Row wise read-out ("rolling shutter") → ILC VXD and SuperBelle

select row with external gate, read current, clear DEPFET, read current again \rightarrow the difference is the signal (row wise CDS)

<u>Advantage</u>

- Low power consumption \rightarrow low material!
- No advanced interconnection technologies needed

<u>Disadvantage</u>

- two different types of auxiliary ASICs needed
- for high frame rates very little time per row

Design goal at SuperBelle: 10MHz frame rate \rightarrow 80ns row rate

2. Hybrid-pixel-like approach: one amp. and ADC per pixel

<u>Advantage</u>

 parallel processing of the pixels → higher frame rates with low noise

<u>Disadvantage</u>

- more challenging interconnection
- higher power consumption

Foreseen the focal plane at the XFEL

ILC & SuperBelle Option : DEPFET

SuperBelle Concept (very similar to ILC VXD!!)

Thinning technology established!

Prototype system achievements:

- thick (!) DEPFETs (450µm), CURO and Switcher
- test beam @ CERN:

,

- S/N≈140 @ 450 μm ←→ goal S/N ≈ 20-40 @ 50 μm
- sample-clear-sample 320 ns \leftarrow → goal 80 ns
- s.p. res. \approx 1 µm @ 450 µm $\leftarrow \rightarrow$ goal \approx 10 µm @ 50 µm
- radiation tolerance up to 8 Mrad and ~10¹² n_{eq}/cm² tested with single pixel structures and mini matrices
- New DCD r/o chip with integrated ADC tested and functional

Next steps - very(!) briefly:

- Production of thin wafer scale DEPFET arrays in 2009
- Final SuperBelle Sensors 1.15x7.25 cm² (L1) in 2011
- 0.14% X₀ (incl. frame, chips, bumps)

Pixel Sensors for HEP

ILC & SuperBelle Option : DEPFET

XFEL: DEPFETs with Signal Compression

Challenges at XFEL

- -: high dynamic range up to 10³ photon/pix/bunch (10keV)
- -: fast read out (5MHz frame rate)
- -: and many more!

DEPFETs for the XFEL

- -: 200 x 200 μm^2 , 1024x1024 pixel in the focal plane
- -: Bump bonded f/e, 5Mhz frame rate
- -: read out noise $<50 e^{-1} rms$
- -: single photon resolution
- -: quantum efficiency >0.8 from 0.3 to 12 keV photons

Signal compression by shaping of the internal gate:

- -: The internal gate extends into the region below the source
- -: Small signals assemble below the channel, being fully effective in steering the transistor current
- -: Large signals spill over into the region below the source. They are less effective in steering the transistor current.

CMOS Sensors: Main Features

p-type low-resistivity Si hosting n-type "charge collectors"

signal created in epitaxial layer (low doping):

Q \sim 80 e-h / $\mu m \mapsto$ signal \lesssim 1000 e $^-$

- charge sensing through n-well/p-epi junction
- excess carriers propagate (thermally) to diode with help of reflection on boundaries with p-well and substrate (high doping)

Specific advantages of CMOS sensors:

- \diamond Signal processing μ circuits integrated on sensor substrate (system-on-chip) \mapsto compact, flexible
- \diamond Sensitive volume (\sim epitaxial layer) is \sim 10–15 μm thick \longrightarrow thinning to \sim 30–40 μm permitted
- ♦ Standard, massive production, fabrication technology → cheap, fast turn-over
- ♦ Room temperature operation
- Attractive balance between granularity, mat. budget, rad. tolerance, r.o. speed and power dissipation
 - \bowtie Very thin sensitive volume \rightarrow impact on signal magnitude (mV !)
 - Sensitive volume almost undepleted \rightarrow impact on radiation tolerance & speed
 - ▶ Commercial fabrication (parameters) → impact on sensing performances & radiation tolerance

Numerous MIMOSA chips tested on H.E. beams (SPS, DESY)

- \Rightarrow validated for several short & mid-term applications :
- $N \sim 10 e^- \mapsto S/N \gtrsim 20-30 (MPV)$ $\Rightarrow \epsilon_{det} \sim 99.5-99.9 \%$ for fake rate $\lesssim 10^{-5}$
- $T_{oper.} \gtrsim$ 40 $^{\circ}$ C
- Spatial resolution exploits charge sharing between pixels: $\sigma_{
 m sp} \sim 1 - 1.5 - 2 - 3 \,\mu m$ for $10 - 20 - 30 - 40 \,\mu m$ pitch
- Ionising radiation tolerance: \gtrsim 1 MRad (10 keV X-Ray)
- Non-Ionising radiation tolerance: \sim O(10 13) n $_{eq}$ /cm 2
- Technology without epitaxy also performing well : very high S/N but large clusters (hit separation)
- Macroscopic sensors used for particle tracking/vertexing (thinned to 50 μm)

Sensors adapted to applications with \lesssim 10 3 frames/s :

 \Rightarrow several beam telescopes – ex: EUDET (EU-FP6) beam telescope

Pixel Sensors for HEP

column // sensor (70,000 pixels, 18 μm pitch) operationnal at 10 kfps

- 128 column of 576 pixels read-out in // with in-pixel Correl. Dble Sampling
- ← operated at CERN-SPS : N \sim 10–13 e⁻ ENC $\mapsto \epsilon_{det} \gtrsim$ 99.8 %
- → Nov. '08 : reticle size (1152 columns) with integrated zero supp.

STAR vertex detector at RHIC : 2 consecutive versions

- ho 2008/09 : 30 μm pitch with discriminated outputs ($\sigma_{sp}\sim$ 6 μm) and 640 μs r.o. time
- \simeq 2009/10 : 18 μm pitch with integrated zero suppression ($\sigma_{sp} < 4 \,\mu m$) and < 200 μs r.o. time
- * $T_{op} \gtrsim 30^{\circ} \text{C} P_{diss} \sim 100 \text{ mW/cm}^2$

CBM vertex detector at FAIR: 2 steps

- ightarrow 2011/12 (?) : \lesssim 20 μm pitch with integrated zero suppression and < 20 μs read-out time
- \simeq \gtrsim 201X ? : faster and more radiation tolerant sensors, likely based on 3D (=vertical) integration technologies
- * Operation in vacuum

CMOS Sensors with In-Pixel Full Data Processing

Deep NWell 130nm CMOS MAPS

- Rad-hard MAPS with data sparsification and high rate capability (self-triggering pixel design, in-pixel comparator, in-pixel time stamping and sparsification logic)
 - Deep N-Well (DNW) as collecting electrode
 - Classical pixel analog processing with charge-sensitive preamplifier Gain independent of the sensor capacitance collecting electrode can be extended and include NMOS of the analog section
 - Area of the <u>"competitive" nwells</u> housing PMOSFETs inside the pixel kept to a minimum. Fill factor = DNW/total n-well area ~90% in the prototype test structures
- **Pros:** With 100-nm scale CMOS, integration of advanced analog and digital functions at the pixel level (as in hybrid pixels), rad-hard electronics
- **Cons:** possible limitations in pixel pitch (go to more scaled CMOS, but higher cost, only binary readout) and detection efficiency (pixel layout critical, deep P-well option?)

SLIM5, ILC – INFN & Italian Universities

- 2004-2006: Proof of principle achieved with the first prototypes in a 130 nm triple well CMOS process
- 2007-2009: Full size MAPS sensors and detector modules, beam tests

Experimental results and plans

• Performed successful tests of a first generation of Deep N-Well CMOS MAPS with in-pixel sparsification and time stamping.

• Sensors with different sparsified readout architectures and pixel pitches are being optimized for operation at a Super B-Factory (large background, equivalent to a continuous beam operation) and at

•DNW MAPS are evolving towards vertical integration.

design with a 2 tier structure (sensor& analog tier + digital tier) is pursued to improve performance (smaller pitch, higher efficiency, increased pixel functionalities)

3D Integrated Sensors for the ILC Vertex Detector

Vertical Integration – 3D

- A 3D device is a chip comprised of 2 or more layers of semiconductor devices which have been thinned, bonded, and interconnected to form a monolithic circuit
- Advantages of 3D
 - Increased circuit density due to multiple tiers of electronics
 - Fully active sensor area
 - Independent control of substrate materials for each of the tiers
 - Process optimization for each layer
 - Ability to mate various technologies in a monolithic assembly
- Technology driven by industry
 - Reduce R, L, C for higher speed
 - Reduce chip I/O pads
 - Provide increased functionality
 - Reduce interconnect power, crosstalk

- Critical issue are:
 - Layer thinning to $< 10 \,\mu m$
 - Precision alignment (< 1 μ m)
 - Bonding of the layers
 - Through-wafer via formation

- 3DIT are expected to be particularly beneficial for CMOS sensors :
 - combine different fab. processes

- alleviate constraints on transistor type inside pixel
- Split signal collection and processing functionnalities :
 - Tier-1: charge collection system
 - Tier-3: mixed and digital signal processing
- Tier-2: analog signal processing
- Tier-4: data formatting (electro-optical conversion ?)
- Use best suited technology for each Tier :
 - Tier-1: epitaxy, deep N-well ? Tier-2: analog, low leakage current, process (nb of metal layers)
 - Tier-3 & -4 : digital process (nb of metal layers), feature size \rightarrow fast laser (VOCSEL) driver, etc.

Three Tier Arrangement for VIP1 Pixel

F

TWEPP-08

ILC Projects in Tezzaron MPW

Convert MIT LL VIP2a design to the Fezzaron/Chartered process (VIP2b) - Fermilab

- CMOS design should be easier.
- Going from 3 layers in 0.18 um technology to 2 layers in 0.13 um technology could reduce pixel size below 20 um.
- Using the "via first" process at Chartered eliminates the wasted area needed for vias in the "via last" MIT LL process.
- Fabrication in the Chartered fully characterized process and models, along with standard cell libraries should lend itself to high yield.
- Because VIP2b is in a CMOS deep sub micron process, the design should be inherently more radiation hard.
 - Radiation tolerance of Chartered 0.13 um process is currently being studied by another group.
- Convert 2D MAPS device design for ILC to 3D design where PMOS devices are placed on the tier without sensing diodes Italy

:MOS pixels with one tier used as a sensitive volume ind the second containing electronics. - France

-36-

SLHC Projects in Tezzaron MPW Run

Convert the current 0.25 um ATLAS pixel electronics to a 3D structure with separate analog and digital tiers in the Chartered 0.13 um process. - France ¹⁵

Develop a 3D chip with 2 tiers of electronics to explore the advantages of 3D for the Super CMS pixel detector. - Fermilab

- Going from 1 layer of circuitry in a 0.25um process to 2 layers in a 0.13 um process can increase circuit density by a factor of 7.
- Circuit density can by traded for smaller pixel size.
- Features to consider for parallel processing
 - In pixel digitization
 - Large digital storage
 - Triggering capability
 - Sparsification
 - Reduction of peripheral circuitry

-

SUMMARY

,

SUMMARY

Numerous types of sensors & architectures currently developed for future vertex detectors (several not mentioned in this talk)

 \hookrightarrow R&D driving forces : ILC & SuperLHC (with benefits for HIC, SuperB factory, CLIC)

CCDs and HPS were \pm the only options for many years

 \hookrightarrow big landscape change under way

Very promising emerging solution : 3D (vertical) Integration Technologies

→ existing sensing technologies (CMOS sensors, DEPFETs, ... XR imaging ...)
 obviously going to take big advantage of 3DIT

FNAL already well introduced in 3DIT (VIP-1 & -2 for ILC)

⇒ Next step : commercial run (Tezzaron-Chartered) in Spring '09 with Italian & French labs for ILC and SLHC

Coming 2 years expected to reveal numerous new results

⇒ Benefits for PS ? Common HEP-PS projects ?