F Hautmann

CASCADE Monte Carlo for ep physics

Workshop on Future Physics with HERA Data

DESY, November 2014

Motivation

CASCADE

[H Jung et al, EPJ C 70 (2010) 1237H Jung, Comput Phys Commun 143 (2002) 100H Jung and G P Salam, EPJ C 19 (2001) 351]

is the first – and, so far, the only - parton shower Monte Carlo using transverse momentum dependent (TMD) initial-state parton distributions.

Outline

Hadron structure including transverse momentum dependence

Precision DIS data and applications at the LHC

Final states in ep: jets and particle multiplicities

The collinear parton density functions

correlation of parton fields at lightcone distances

$$V_y(n) = \mathcal{P} \exp \left(i g_s \int_0^\infty d au \, n \cdot A(y + au \, n)
ight)$$

Examples: generalized evolution equations

Classic motivations for TMDs (I) Drell Yan hadroproduction pT spectra

TMD factorization

CSS formalism

$$rac{d\sigma}{d^4q} = \sum_{ij} H_{ij}(Q^2/\mu^2, lpha_s(\mu)) \int d^2b_\perp \ e^{iq_\perp \cdot b_\perp} \ f_i(x_1, b_\perp; \zeta_1, \mu) \ f_j(x_2, b_\perp; \zeta_2, \mu)$$

where
$$\frac{\partial \ln f}{\partial \ln \sqrt{\zeta}} = K(b_{\perp}, \mu)$$
 and $\frac{d \ln f}{d \ln \mu} = \gamma_f(\alpha_s(\mu), \zeta/\mu^2)$

+ Y-term + $\mathcal{O}\left(\Lambda_{\text{QCD}}^2/Q^2\right)$

 $rac{dK}{d\ln\mu} = -\gamma_K(lpha_s(\mu))$ cusp anomalous dimension

 Soft Collinear Effective Theory (SCET) provides alternative approach to comparable results
 [Echevarria, Idilbi, Scimemi 2012; Chiu, Jain, Neill, Rothstein 2012; Becher, Neubert 2011; Mantry, Petriello 2011]

Classic motivations for TMDs (II)

DIS at $x \rightarrow 0$: large corrections to fixed order

transverse momentum dependent high-energy factorization ;

"The TMDlib project" http://tmdlib.hepforge.org/

- a platform for theory and phenomenology of TMD pdfs
- library of fits and parameterizations
 LHApdf style

TMDIb and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions Version 1.0.0

F. Hautmann^{1,2}, H. Jung^{3,4}, M. Krämer³, P. J. Mulders^{5,6}, E. R. Nocera⁷, T. C. Rogers⁸, A. Signori^{5,6}

¹ Rutherford Appleton Laboratory, UK

² Dept. of Theoretical Physics, University of Oxford, UK

³ DESY, Hamburg, FRG

⁴ University of Antwerp, Belgium

⁵ Department of Physics and Astronomy, VU University Amsterdam, the Netherlands

⁶ Nikhef, the Netherlands

⁷ Università degli Studi di Milano and INFN Milano, Italy

⁸ C.N. Yang Institute for Theoretical Physics, Stony Brook University, USA

Abstract

Transverse-momentum-dependent distributions (TMDs) are central in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library, TMDlib, of fits and parameterisations for transverse-momentumdependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.

2014

13 Aug

arXiv:1408.3015v1 [hep-ph]

Example: flavor singlet evolution at small x

• TMD factorization \Rightarrow well-defined resummation of $\alpha_s^n \ln^{n-m} x$ corrections to anomalous dim's (splitting functions) as well as DIS coefficient functions

Example: DIS F_2 coefficient function from TMD factorization

$$C^g_{2,N}(lpha_s,Q^2/\mu^2)=\int_0^1 dx\; x^{N-1}\; C^g_2(x,lpha_s,Q^2/\mu^2)$$
 Mellin moments

$$\begin{split} C_{2,N}^{g}(\alpha_{s},Q^{2}/\mu^{2} = 1) \\ &= \frac{\alpha_{s}}{2\pi}T_{R}N_{f}\frac{2}{3}\left\{1 + 1.49 \ \frac{\overline{\alpha}_{s}}{N} + 9.71 \left(\frac{\overline{\alpha}_{s}}{N}\right)^{2} + 16.43 \left(\frac{\overline{\alpha}_{s}}{N}\right)^{3} + \mathcal{O}\left(\frac{\alpha_{s}}{N}\right)^{4}\right\} \\ & \text{LO NLO } \\ & \text{(MVV 2004)} \\ & \text{(Catani \& H (1994)]} \\ & \alpha_{s}(\alpha_{s}/N)^{k} \leftrightarrow \alpha_{s}^{2}(\alpha_{s}\ln x)^{k-1} \end{split}$$

Need for single-log resummations [cf. double-log ($x \rightarrow 1, x \rightarrow 0$ timelike): e.g., A. Vogt, talk at DIS2012, Bonn]

What can we learn from high-precision deep inelastic scattering (DIS) data?

Phenomenological applications require matching small-x contributions with medium and large x

Beyond $x \rightarrow 0$: CCFM exclusive evolution

→ Catani-Ciafaloni-Fiorani-Marchesini

$$x\mathcal{A}(x,k_t,q) = x\mathcal{A}(x,k_t,q_0)\Delta_{s}(q) + \int dz \int rac{dq'}{q'} \cdot rac{\Delta_{s}(q)}{\Delta_{s}(q')} ilde{P}(z,k_t,q')rac{x}{z}\mathcal{A}\left(rac{x}{z},q'
ight)$$

 solve integral equation via iteration:

 $x\mathcal{A}_0(x,k_t,q) = x\mathcal{A}(x,k_t,q_0)\Delta(q) \xrightarrow{\text{from q' to } q} \xrightarrow{\text{branching at q'}} \xrightarrow{\text{from q_0 to } q'} \\ x\mathcal{A}_1(x,k_t,q) = x\mathcal{A}(x,k_t,q_0)\Delta(q) + \int \frac{dq'}{dt} \frac{\Delta(q)}{\Delta(q)} \int dz \tilde{P}(z) \frac{x}{-\mathcal{A}(x/z,k_t',q_0)\Delta(q')}$

V

Note: evolution equation formulated with Sudakov form factor is equivalent to "plus" prescription, but better suited for numerical solution for treatment of kinematics

$$\int \frac{dq}{q'} \frac{\Delta(q')}{\Delta(q')} \int dz P(z) \frac{dz}{z} A(x/z, k'_{t})$$

$$x \quad t$$

$$z = x/x_{0} \quad t'$$

$$P(z)$$
Sed
$$x_{0}, t_{0}$$

Physical interpretation in terms of parton showers

• Factorizability of QCD x-sections \longrightarrow probabilistic branching picture

♦ QCD evolution by "parton showering" methods:

CCFM equation is TMD branching equation which contains both Sudakov physics and BFKL physics

kT-dependent gluon density from precision DIS data

[Jung & H, Nucl. Phys. B 883 (2014) 1]

- Good description of inclusive DIS data with TMD gluon
- Sea quark yet to be included at TMD level
- Fit performed with HERAFitter arXiv:1410.4412 [hep-ph] https://www.herafitter.org/

	$\chi^2/ndf(F_2^{(m charm)})$	$\chi^2/ndf(F_2)$	χ^2/ndf (F_2 and	$F_2^{(\text{charm})}$
3-parameter	0.63	1.18		1.43	
5-parameter	0.65	1.16		1.41	

kT-dependent gluon density from precision DIS data

[Jung & H, Nucl. Phys. B 883 (2014) 1]

FIG. 6. Experimental and theoretical uncertainties of the unintegrated TMD gluon density versus x for different values of transverse momentum at $p^2 = m_Z^2$. The yellow band gives the uncertainty from the factorization scale variation; the curves indicate the uncertainties from the other sources.

Can we go to large transverse momenta?

Applications to LHC final states

Application to vector bosons + jets

- Motivation: effects of not only collinear-ordered emissions but also non-ordered region which opens up at high s / pt^2 (and large pt).
- Finite angle multi-gluon radiation.
- Push limits of high-energy expansion beyond small-x region.
- Jet multiplicities associated with
 W boson production

Atlas data PRD85 (2012) 092002: jet | y | < 4.4

Note: pt-ordered shower (eg, Pythia) cannot predict higher jet multiplicities

F Hautmann: Workshop on Future Physics with HERA Data, DESY, November 2014

 Role of transverse-momentum kinematics on jets produced at moderately non-central rapidities

Can we go to large transverse momenta? Total H_T distribution in W + n jets final states at the LHC

 H_T (W+ ≥ 1 jets) $H_T (W + \ge 3 \text{ jets})$ dơ/dH_T [pb/GeV] 10¹ do/dH_T [pb/GeV] ATLAS data TLAS data H 2013 set2 mode A 10 4 2013 set2 mode A – JH 2013 set2 mode B H 2013 set2 mode B $p_{\perp}^{\text{jet}} > 30 \text{ GeV}$ 30 GeV 10 10 10-3 10-2 1.6 1.8 1.4 1.6 MC/Data MC/Data 1.2 1.4 1.2 1 o.8 0.8 0.6 0.6 0.4 0.4 600 700 600 100 200 300 400 500 200 300 400 500 700 H_T [GeV] H_T [GeV]

Dooling, Jung & H, Phys. Lett. B736 (2014) 293

mode A: uncertainties from renorm. scale, starting evol. scale, expt. errors

mode B: include factorization scale uncertainties

Theoretical uncertainties larger for larger H_T (increasing x) and, at fixed H_T, for higher jet multiplicities

 $mu^2 = m^2 + qT^2$

Dooling, Jung & H, Phys. Lett. B736 (2014) 293

Mode C: vary transverse part of mu² by factor 2 above and below central value (more closely related to standard collinear calculations)

Mode B: include variation of longitudinal component (more conservative estimate – unlike standard collinear approximations) F Hautmann: Workshop on Future Physics with HERA Data, DESY, November 2014

W + n jets final states at the LHC: pT spectra of subleading jets

Dooling, Jung & H, Phys. Lett. B 736 (2014) 293

Subleading jets: (left) second jet pT; (right) third jet pT

What do we gain?

Uses of TMD pdfs + kt-dependent shower:

matching with 2 → n off-shell parton calculations (automated method, see van Hameren, Kotko & Kutak JHEP 1301 (2013) 078)

 Opens possibility for full LHC phenomenology of QCD, EWK and BSM processes

W + 2 jets as signal of double parton interactions

- Influence of TMD corrections to shower evolution on analysis of DPI?
- ole parton interactions

- Formalism interpolates from low pT to high pT
- Incorporates experimental information from high-precision DIS measurements
- Takes into account transverse momentum kinematics without approximations in the branching

Double chain

Going to lower pT in ep final states:

DIS jets

charged particle multiplicities

DIS dijet azimuthal distribution

HZToolAnalysis/hzo7062 data

 $E_T > 7(5)$ GeV, 0.00017 < x < 0.0003

di-jet (ZEUS Nuclear Physics B 786 (2007) 152)

IH 2013 set1

JH 2013 set2-prof

107

106

105

10

103

 10^{2}

10¹

2

dσ/dΔφ

CASCADE with new TMD pdfs from precision F2 and F2-charm data

• ZEUS 2007 jet measurements

F Hautmann: Workshop on Future Physics with HERA Data, DESY, November 2014

di-jet (ZEUS Nuclear Physics B 786 (2007) 152)

JH 2013 set1

IH 2013 set2-prof

HZToolAnalysis/hzo7062 data

 $E_T > 7(5)$ GeV, 0.0003 < x < 0.0005

107

10

105

104

103

10

10

2

dσ/d∆φ

DIS 3-jet production

- CASCADE with new TMD pdfs from precision F2 and F2-charm data
- ZEUS 2007 jet measurements

10⁶

10⁵

104

103

 10^{2}

10

MC/Data 1.5

2

0

dσ/d∆φ

Momentum correlations $|\sum p_T^{1,2}|$

Momentum correlations $|\Delta p_T^{1,2}|/(2E_T^1)$

Charged particle spectra in the central region

Could this be used to constrain TMD pdfs at low transverse momenta?

Charged particle spectra in the central region

Could this be used to constrain TMD pdfs at low transverse momenta?

Conclusion

 TMD proton structure relevant to both large pT and small pT processes, high x and low x: TMDlib platform http://tmdlib.hepforge.org/

- First determination of TMD gluon from combined high-precision DIS data, including uncertainties [→ HERAFitter]
- The approach has far reaching implications for LHC physics: treatment of kinematic corrections to parton showers; studies of theor uncertainties in multi-particle final states; ex.: W + jets pT spectra and angular correlations

Extra slides

Normalize to the back-to-back cross section:

 \triangleright high-k_{\perp}, coherent effect essential for correlation at small $\Delta \phi$

W + 2 jets: signal for double parton interactions?

[E. Dobson, talk at MPI-TAU Workshop, October 2012]

ATLAS, New J Phys 15 (2013) 033038

For jet pT = O(20 GeV) effects from higher orders in kt-shower significant

W + 2 jets: signal for double parton interactions?

How much room is left for DPI in the framework of kt-shower?

Kinematic effects in parton shower evolution

S. Dooling, talk at DIS 2013, Marseille

Kinematic effects in parton shower evolution

- Longitudinal momentum shifts due to energymomentum conservation combined with collinearity approximation
 [S. Dooling et al., arXiv:1212.6264]
- Non-negligible effect especially in data/theory comparisons for high rapidity jets.

Longitudinal momentum shift – Inclusive jets

Compute x, from POWHEG before parton showering and after parton showering (using PYTHIA6)

Kinematic reshuffling in x is negligible for central rapidities but becomes significant for y > 1.5

Kinematic shift can affect predictions through the PDFs Dooling et al.

Classic motivations for TMDs (II)

DIS at $x \rightarrow 0$: large corrections to fixed order

F Hautmann: Workshop on Future Physics with HERA Data, DESY, November 2014

kT-dependent gluon density from precision DIS data

[Jung & H, Nucl. Phys. B 883 (2014) 1]

FIG. 4. Unintegrated TMD gluon density (JH-2013-set1 and JH-2013-set2) at evolution scale equal to the Z-boson mass, $p^2 = m_Z^2$: (top) as a function of x for different values of k_t^2 ; (bottom) as a function of k_t^2 for different values of x. The results are compared with set A0 [35].

Integrated pdfs

FIG. 8. Integral over transverse momenta of the TMD distributions for (left) gluon and (right) valence quark at different evolution scales: (top) $p^2 = 25 \text{ GeV}^2$; (bottom) $p^2 = m_Z^2$.

Comment on scheme dependence: The renormalization group R factor

$$\int^{\mu}~dk_{\perp}~{\cal F}(k_{\perp},\mu)~=~R~\otimes~f^{\overline{
m MS}}(\mu)$$

• Perturbative expansion $(x \rightarrow 0)$:

$$R(x) - \delta(1-x) \simeq 1.40 \ \alpha_s^3 \ \ln^2 x - 0.11 \ \alpha_s^4 \ \ln^3(1/x) + \dots$$

Relationship with RG evolution:

$$\mathcal{F}_{N}(k_{\perp},\mu) = \underbrace{R_{N} \left[\gamma_{N} \frac{1}{k_{\perp}^{2}} \left(\frac{k_{\perp}^{2}}{\mu_{F}^{2}}\right)_{N}^{\gamma}\right]}_{\varepsilon \to 0} \underbrace{\Gamma_{N}(\frac{\mu_{F}^{2}}{\mu^{2}})}_{\text{series of poles } 1/\varepsilon}$$

 γ_N = anomalous dimension μ_F = factorization scale

Application to vector bosons + jets at high energy

 \rightarrow Use exclusive CCFM evolution

 \rightarrow Determine TMD pdf from high-precision DIS data

→ Obtain predictions for final states associated with Drell-Yan using high-energy off-shell matrix elements

• High-energy effective theory \rightarrow effective vertices

[Bogdan & Fadin, NPB740 (2006) 36] [Lipatov & Vyazovsky, NPB597 (2001) 399]

• Parton matrix elements (gauge-invariant, despite off-shell parton)

[Ball & Marzani, NPB814 (2009) 246] [Hentschinski, Jung & H, NPB865 (2012) 54]

W + n jets final states at the LHC: pT spectra of the jets

Dooling, Jung & H, Phys. Lett. B 736 (2014) 293

Leading jet pT: (left) inclusive; (right) n>=3

(left) Delta-phi between two hardest jets; (right) vector boson - third jet correlation