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Figure 3.3: Example of the build-up of the beam polarization, as measured by the TPOL
(blue) and the LPOL (red).

back-scattered photons from an intense circularly polarized laser beam. The TPOL made use
of a spatial asymmetry for left and right circularly polarized laser light, whereas the LPOL
was sensitive to an asymmetry in photon energy for photons with different helicities. The
relative uncertainty on the beam polarization from the combined information of the LPOL
and TPOL is on the order of 3% [57]. Figure 3.3 shows an example of the build-up of the
beam polarization, measured by the LPOL and TPOL.

3.2 The target cell
Over the years of data collection various targets were used in the HERMES experiment in or-
der to accommodate the different physics programs pursued. In the first year of data taking the
target was filled with longitudinally polarized helium-3; subsequently data collection contin-
ued with longitudinally polarized hydrogen (1996–1997) and deuterium (1996–2000). After
a shutdown period of one year during which the HERA storage ring and experiments were
upgraded, a transversely polarized hydrogen target allowed data collection for the transverse-
spin physics program until 2005. At various moments also data were collected with the
three mentioned gas types unpolarized as well as with unpolarized helium-4, neon, nitrogen,
krypton and xenon. The installation of the recoil detector in 2006 forced the dismantling of
the polarized-gas system, and went along with data collection on unpolarized hydrogen and
deuterium.

The target cell used in the last two years of HERMES operation consisted of an open-
ended elliptical aluminum tube with outer diameters of 21.00mm (horizontally) and 9.05mm
(vertically), and a wall thickness of 75 µm. The active length of the tube amounted to 15 cm,
where a gas inlet located in the center allowed for the feed of hydrogen or deuterium gas.
The diffusing gas atoms were pumped away at the outer ends by a very powerful pumping
system. The tube was supported at its extremities by the scattering chamber and alignment
pins, and laterally by 4mm thick aluminum plates. To suppress temperature rises of the target
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Fig. 1. Definition of angles in the process eN ! eN!, where
! ! ⇡

+
⇡

�
⇡

0. Here, � is the angle between the ! production
plane and the lepton scattering plane in the center-of-mass
system of the virtual photon and the target nucleon. The vari-
ables ⇥ and � are respectively the polar and azimuthal angles
of the unit vector normal to the decay plane in the !-meson
rest frame.

while the azimuthal angle � of the unit vector n is given
by

cos � =
(q ⇥ p0) · (p0 ⇥ n)

|q ⇥ p0| · |p0 ⇥ n| , (20)

sin � = � [(q ⇥ p0) ⇥ p0] · (n⇥ p0)

|(q ⇥ p0) ⇥ p0| · |n⇥ p0| . (21)

3 Data analysis

3.1 HERMES experiment

The data analyzed in this paper were accumulated with
the HERMES spectrometer during the running period of
1996 to 2007 using the 27.6 GeV longitudinally polarized
electron or positron beam of HERA, and gaseous hydro-
gen or deuterium targets. The HERMES forward spec-
trometer, which is described in detail in Ref. [22], was
built of two identical halves situated above and below the
lepton beam pipe. It consisted of a dipole magnet in con-
junction with tracking and particle identification detec-
tors. Particles were accepted when their polar angles were
in the range ±170 mrad in the horizontal direction and
±(40�140) mrad in the vertical direction. The spectrom-
eter permitted a precise measurement of charged-particle
momenta, with a resolution of 1.5%. A separation of lep-
tons was achieved with an average e�ciency of 98% and
a hadron contamination below 1%.

3.2 Selection of exclusively produced ! mesons

The following requirements were applied to select exclu-
sively produced ! mesons from reaction (1):
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Fig. 2. Two-photon invariant mass distribution after appli-
cation of all criteria to select exclusively produced ! mesons.
The Breit–Wigner fit to the mass distribution is shown as a
continuous line and the dashed line indicates the PDG value
of the ⇡

0 mass.

i) Exactly two oppositely charged hadrons, which are as-
sumed to be pions, and one lepton with the same charge
as the beam lepton are identified through the analysis of
the combined responses of the four particle-identification
detectors [22].
ii) A ⇡0 meson that is reconstructed from two calorime-
ter clusters as explained in Ref. [23] is selected requir-
ing the two-photon invariant mass to be in the interval
0.11 GeV < M(��) < 0.16 GeV. The distribution of
M(��) is shown in Fig. 2. This distribution is centered
at m⇡0 = 134.69± 19.94 MeV, which agrees well with the
PDG [24] value of the ⇡0 mass.
iii) The three-pion invariant mass is required to obey 0.71
GeV M(⇡+⇡�⇡0)  0.87 GeV.
iv) The kinematic requirements for exclusive production
of ! mesons are the following:
a) The scattered-lepton momentum lies above 3.5 GeV.
b) The constraint �t0 < 0.2 GeV2 is used.
c) For exclusive production the missing energy �E must
vanish. Here, the missing energy is calculated both for pro-

ton and deuteron as �E =
M2

X�M2
p

2Mp
, with Mp being the

proton mass and M2
X = (p + q � p⇡+ � p⇡� � p⇡0)2 the

missing mass squared, where p, q, p⇡+ , p⇡� , and p⇡0 are
the four-momenta of target nucleon, virtual photon, and
each of the three pions respectively. In this analysis, tak-
ing into account the spectrometer resolution, the missing
energy has to lie in the interval �1.0 GeV < �E < 0.8
GeV, which is referred to as “exclusive region” in the fol-
lowing.
d) The requirement Q2 > 1.0 GeV2 is applied in order to
facilitate the application of pQCD.
e) The requirement W > 3.0 GeV is applied in order to

Fit angular distribution              of ω decay pions
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Fig. 6. The 23 SDMEs for exclusive ! electroproduction extracted in the entire HERMES kinematic region with hQ2i =
2.42 GeV2, hW i = 4.8 GeV, h�t

0i = 0.080 GeV2. Proton data are denoted by squares and deuteron data by circles. The inner
error bars represent the statistical uncertainties, while the outer ones indicate the statistical and systematic uncertainties added
in quadrature. Unpolarized (polarized) SDMEs are displayed in the unshaded (shaded) areas.

found to be consistent with each other within their quadrat-
ically combined total uncertainties, with a �2 per degrees
of freedom of 28/23 ⇡ 1.2. In Fig. 6, the eight polarized
SDMEs are presented in shaded areas. Their experimen-
tal uncertainties are larger in comparison to those of the
unpolarized SDMEs because the lepton beam polariza-
tion is smaller than unity (|Pb| ⇡ 40%) and in the equa-
tion for the angular distribution they are multiplied by
the small kinematic factor |Pb|

p
1 � ✏ ⇡ 0.2, cf. Eq. (14)

vs. Eq. (15).

5.2 Test of the SCHC hypothesis

In the case of SCHC, the seven SDMEs of class A and
class B (r04

00, r1
1�1, Im{r2

1�1}, Re{r5
10}, Im{r6

10}, Im{r7
10},

Re{r8
10}) are not restricted to be zero, but six of them

have to obey the following relations [3]:

r1
1�1 = �Im{r2

1�1},
Re{r5

10} = �Im{r6
10},

Im{r7
10} = Re{r8

10}.

The proton data yield

r1
1�1 + Im{r2

1�1} = �0.004 ± 0.038 ± 0.015,

Re{r5
10} + Im{r6

10} = �0.024 ± 0.013 ± 0.004,

Im{r7
10}� Re{r8

10} = �0.060 ± 0.100 ± 0.018,

and the deuteron data yield

r1
1�1 + Im{r2

1�1} = 0.033 ± 0.049 ± 0.016,

Re{r5
10} + Im{r6

10} = 0.001 ± 0.016 ± 0.005,

Im{r7
10}� Re{r8

10} = 0.104 ± 0.110 ± 0.023.

Here and in the following, the first uncertainty is statistical
and the second systematic. In the calculation of the sta-

• s-channel helicity conservation:


• fulfilled for class A&B


• class C - slight violation: 

r500 6= 0 3(2)�by        for p(d)

• class D - slight violation:

• 5 classes of SDMEs


• unpolarized and polarized SDMEs


• proton & deuteron similar

�0.14± 0.03± 0.04

�0.10± 0.03± 0.03

for p
for d

r511 + r51�1 �=r61�1 =

arXiv:1407.2119 

}
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•ω:  
•ρ0: 

r11�1 < 0

r11�1 > 0

=r21�1 > 0
=r21�1 < 0

large unnatural parity



exchange for ω production



large natural parity



exchange for ρ production
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u1 = 1� r0400 + 2 r041�1 � 2 r111 � 2 r11�1

/ 2 ✏|U10|2 + |U11 + U�11|2

N(p) N(p0)

!(v)

e(k) e(k0)

�⇤(q)

t

Q2

• large unnatural parity exchange


• model for protons - S. Goloskokov and P. Kroll, arXiv. 1407.1141:



 without pion-pole contribution


 with pion-pole contribution

π0

(U=unnatural-parity amplitude)
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Fig. 7. Q2 and �t

0 dependences of class-A SDMEs. Proton data are denoted by squares and deuteron data by circles. Data
points for deuteron data are slightly shifted horizontally for legibility. The representation of the uncertainties follows that of
Fig. 6. The proton data are compared to calculations of a phenomenological model [17], where solid (dashed) lines denote results
with (without) pion-pole contributions.
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Fig. 8. Q

2 and �t

0 dependences of class-B SDMEs. Otherwise as for Fig. 7.

helicity amplitudes, these two SDMEs are written [20] as

r1
1�1 =

1

2N
g

X

�

|T11|2 + |T1�1|2

�|U11|2 � |U1�1|2
�

, (28)

Im{r2
1�1} =

1

2N
g

X

�

�|T11|2 + |T1�1|2

+|U11|2 � |U1�1|2
�

. (29)

The di↵erence between Eqs. (29) and (28) reads

Im{r2
1�1}� r1

1�1 =
1

N
g

X

(�|T11|2 + |U11|2). (30)

For the entire kinematic region, this di↵erence is clearly

positive for the ! meson, hence f

P

|U11|2 > f

P

|T11|2, while

for the ⇢0 meson f

P

|T11|2 > f

P

|U11|2 [20]. This suggests
a large UPE contribution in exclusive !-meson produc-
tion. Applying Eq. (11) to relation (30), the latter can be

• no clear kinematic dependence observed


• again need for unnatural pion-pole exchange seen!

class A
arXiv:1407.2119 
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Fig. 7. Q2 and �t

0 dependences of class-A SDMEs. Proton data are denoted by squares and deuteron data by circles. Data
points for deuteron data are slightly shifted horizontally for legibility. The representation of the uncertainties follows that of
Fig. 6. The proton data are compared to calculations of a phenomenological model [17], where solid (dashed) lines denote results
with (without) pion-pole contributions.
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Fig. 8. Q

2 and �t

0 dependences of class-B SDMEs. Otherwise as for Fig. 7.

helicity amplitudes, these two SDMEs are written [20] as

r1
1�1 =

1

2N
g

X

�

|T11|2 + |T1�1|2

�|U11|2 � |U1�1|2
�

, (28)

Im{r2
1�1} =

1

2N
g

X

�

�|T11|2 + |T1�1|2

+|U11|2 � |U1�1|2
�

. (29)

The di↵erence between Eqs. (29) and (28) reads

Im{r2
1�1}� r1

1�1 =
1

N
g

X

(�|T11|2 + |U11|2). (30)

For the entire kinematic region, this di↵erence is clearly

positive for the ! meson, hence f

P

|U11|2 > f

P

|T11|2, while

for the ⇢0 meson f

P

|T11|2 > f

P

|U11|2 [20]. This suggests
a large UPE contribution in exclusive !-meson produc-
tion. Applying Eq. (11) to relation (30), the latter can be

arXiv:1407.2119 

• no clear kinematic dependence observed


• need for unnatural pion-pole exchange seen for unpolarized SDMEs
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Fig. 14. The Q

2 (left) and �t

0 (right) dependences of the longitudinal-to-transverse virtual-photon di↵erential cross-section
ratio for exclusive ! and ⇢

0 electroproduction at HERMES, where the �t

0 bin covers the interval [0.0-0.2] GeV2 for ! production
and [0.0-0.4] GeV2 for ⇢

0 production [20]. The symbols that are parenthesized in the legend represent the value of R in the
entire kinematic region. Otherwise as for Fig. 7.

This relation is exact in the case of SCHC. The Q2 depen-
dence of R for the ! meson is shown in the left panel of
Fig. 14, where also for comparison the same dependence
for the ⇢0 meson [20] is shown. For ! mesons produced in
the entire kinematic region, it is found that R = 0.25 ±
0.03 ± 0.07 for the proton and R = 0.24 ± 0.04 ± 0.07
for the deuteron data. Compared to the case of exclu-
sive ⇢0 production, this ratio is about four times smaller,
and for the ! meson this ratio is almost independent of
Q2. The �t0 dependence of R is shown in the right panel
of Fig. 14. The comparison of the proton data to the GK
model calculations with and without inclusion of the pion-
pole contribution demonstrates the clear need to include
the pion pole. The data are well described by the model
and appear to follow the �t0 dependence suggested by the
model when the pion-pole contribution is included. This
implies that transverse and longitudinal virtual-photon
cross sections have di↵erent �t0 dependences. Hence the
usual high-energy assumption that their ratio can be iden-
tified with the corresponding ratio of the integrated cross
sections does not hold in exclusive ! electroproduction at
HERMES kinematics, due to the pion-pole contribution.
The GK model appears to fully account for the unnatural-
parity contribution to R and shows rather good agreement
with the data.

5.7 The UPE-to-NPE asymmetry of the transverse
cross section

The UPE-to-NPE asymmetry of the transverse di↵erential
cross section is defined as [29]

P =
d�N

T � d�U
T

d�N
T + d�U

T

⌘ d�N
T /d�U

T � 1

d�N
T /d�U

T + 1

= (1 + ✏R)(2r1
1�1 � r1

00), (44)

where �N
T and �U

T denote the part of the cross section due
to NPE and UPE, respectively. Substituting Eq. (43) in
Eq. (44) leads to the approximate relation

P ⇡
2r1

1�1 � r1
00

1 � r04
00

. (45)

The value of P obtained in the entire kinematic region
is �0.42 ± 0.06 ± 0.08 and �0.64 ± 0.07 ± 0.12 for proton
and deuteron, respectively. This means that a large part of
the transverse cross section is due to UPE. In Fig. 15, the
Q2 and �t0 dependences of the UPE-to-NPE asymmetry
of the transverse di↵erential cross section for exclusive !
production are presented. Again, the GK model calcula-
tion appears to fully account for the unnatural-parity con-
tribution and shows very good agreement with the data
both in shape and magnitude.

5.8 Hierarchy of amplitudes

In order to develop a hierarchy of amplitudes, in the fol-
lowing a number of relations between individual helicity
amplitudes is considered. The resulting hierarchy is given
in Eqs. (62) and (64) below.

5.8.1 U10 versus U11

From Eqs. (35) and (37), the relation

p

2(u2
2 + u2

3)

u1
⇡ |U11U

⇤
10|

|U11|2 + 2✏|U10|2

=
|U10/U11|

1 + 2✏|U10/U11|2
(46)

is obtained. Using the measured values of those SDMEs
that determine u1, u2, and u3, the following amplitude

R =
d�L(�⇤

L ! V )

d�T (�⇤
T ! V )

⇡ 1

✏

r0400
1� r0400

• R≈0.25 for ω, 4x smaller than for ρ


• again need for unnatural pion-pole exchange


• no Q2 dependence, t’ dependence?
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Semi-inclusive DIS



Semi-inclusive DIS cross section
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27
leading twist

Semi-inclusive DIS cross section
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higher twist!
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Motivation
• Large left-right asymmetries (AN) observed in                for      from 4.9 to 500 GeV
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• various polarized pp scattering experiments consistently observe 
since 35 years large A
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• not interpretable in leading-twist based on collinear factorisation 
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• Not interpretable based on collinear factorisation in leading twist



• Possible interpretations are based on 



• TMD PDFs and FFs - mainly Sivers and Collins effect



• collinear, with higher-twist multiparton correlations 



• combination of both, with different kinematic domains of validity



• Need additional experimental data!



Transverse target spin 
asymmetry at HERMES

37

• Inclusive hadron electroproduction
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• PT > ΛQCD: higher twist


• PT≈ΛQCD: no theory predictions


• ≈ overall results, 98% of statistics
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• mainly ⟨Q2⟩ > PT
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• large asymmetries for π±, K+



• exclusive processes (ρ,φ)


favoured fragmentation
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Transverse Λ polarization in 
inclusive measurement
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Λ



Motivation
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the (B) term, indicating large ℓT dependence at 1 ≤ ℓT ≤ 3 GeV. Experimentally,
P pp

Λ grows up as ℓT increases up to ℓT ∼ 1 GeV and stays constant at 1 ≤ ℓT ≤ 3
GeV. So the P pp

Λ observed at R608 can not be wholly ascribed to the twist-3 effect
studied here which is designed to describe large ℓT polarization.
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Figure 1: P pp
Λ at

√
S = 62 GeV.

-0.6

-0.4

-0.2

0.0

0.2

0.80.60.40.20.0

P
Λ

xF

S=2002 GeV2

lT= 1.5 GeV

Even
Odd (sc.2)

Odd (sc.3)

Figure 2: P pp
Λ at

√
S = 200 GeV.

We next discuss the polarization P ep
Λ in pe → Λ↑(ℓ)X where the final electron

is not observed. In our O(α0
s) calculation, the exchanged photon remains highly

virtual as far as the observed Λ has a large transverse momentum ℓT with respect
to the ep axis. Therefore experimentally one needs to integrates only over those
virtual photon events to compare with our formula.
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Λ at
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Using the twist-3 distribution and fragmentation functions used to describe
P pp

Λ , we show in Fig. 4 the obtained P ep
Λ corresponding to (A’)(chiral-odd) and

(B’)(chiral-even) contributions. Remarkable feature of Fig. 4 is that in both chiral-
even and chiral-odd contributions (i) the sign of P ep

Λ is opposite to the sign of P pp
Λ

and (ii) the magnitude of P ep
Λ is much larger than that of P pp

Λ , in particular, at
large xF , and it even overshoots one. (In our convention, xF > 0 corresponds
to the production of Λ in the forward hemisphere of the initial proton in the ep
case.) The origin of these features can be traced back to the color factor in the
dominant diagrams for the twist-3 polarized cross sections in ep and pp collisions.
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•               scattering?


• SIDIS (high Q2) PΛ            , polarized FF


• current measurement: inclusive (Q2≈0) 
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• Large transverse Λ polarization PΛ observed in unpolarized 
hadron scattering experiments



• Vast majority: negative polarization values observed,  
except positive for K-p and Σ-N



• Magnitude increases with xF and pT, reaching plateau for 
pT=1 GeV 
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Using the twist-3 distribution and fragmentation functions used to describe
P pp

Λ , we show in Fig. 4 the obtained P ep
Λ corresponding to (A’)(chiral-odd) and

(B’)(chiral-even) contributions. Remarkable feature of Fig. 4 is that in both chiral-
even and chiral-odd contributions (i) the sign of P ep

Λ is opposite to the sign of P pp
Λ

and (ii) the magnitude of P ep
Λ is much larger than that of P pp

Λ , in particular, at
large xF , and it even overshoots one. (In our convention, xF > 0 corresponds
to the production of Λ in the forward hemisphere of the initial proton in the ep
case.) The origin of these features can be traced back to the color factor in the
dominant diagrams for the twist-3 polarized cross sections in ep and pp collisions.
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• positive PΛ for light nuclei


• PΛ consistent with zero for heavier nuclei
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p!
kmax is its maximum possible value, but this variable is not

available in an inclusive measurement. Nevertheless, as
shown in Fig. 3, a simulation of the reaction using the
PYTHIA Monte Carlo reveals a useful correlation between !
and xF. In particular, all events at ! ! 0:25 are produced in
the kinematic region xF > 0, and for ! < 0:25 there is a
mixture of events originating from the kinematic regions
with xF > 0 and xF < 0. An indication that the dominant
production mechanism changes at ! values around 0.25 can
be observed in the ratio of ! to "! yields displayed in Fig. 4.
The yields are not corrected for acceptance as PYTHIA
Monte Carlo studies indicate that the detection efficiencies
for ! and "! are the same. Above ! " 0:25, an approxi-
mately constant ratio of about 4 is seen. At lower values the
ratio increases significantly, likely indicating the influence
of the nucleon target remnant in ! formation.

The ! and "! polarizations are shown as functions of ! in
Fig. 5. The ! polarization is about 0.10 in the region ! <
0:25, and about 0.05 at higher ! . Combining all kinematic
points together, the average ! transverse polarization is

 P!
n # 0:078$ 0:006%stat& $ 0:012%syst&: (16)

For the "! measurement, no kinematic dependence is ob-
served within the statistical uncertainties. The net "! trans-
verse polarization is

 P "!
n # '0:025$ 0:015%stat& $ 0:018%syst&: (17)

It should be noted that for each point in ! the value of the
hyperon’s mean transverse momentum hpTi is different as
is shown in the lower panel of Fig. 5. Here pT is defined
with respect to the eN system rather than to the "(N
system as, again, the virtual-photon direction was not
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FIG. 3. Correlation between xF, evaluated in the "(N system,
and the light-cone fraction ! determined in the eN system, as
determined from a PYTHIA Monte Carlo simulation.
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⇣ = (E⇤ + pz⇤)/(Ee + pe)

• H+D: PΛ larger in backward region       possibly influence of current and 
target fragmentation

forward
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H+D,      ζ < 0.2
H+D,   ζ > 0.3
Kr+Xe,   0 < ζ < 1 
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• H+D: PΛ increases with pT in backward region, while constant in forward 
region
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