

Charlotte Van Hulse, for the HERMES collaboration University of the Basque Country – Spain

> HERA symposium DESY – Hamburg, 11 November 2014

Outline

- HERMES experiment
- exclusive ω production
- A_{UT} and A_{LT} in semi-inclusive DIS
- inclusive AUT
- Λ polarization in quasi-real photoproduction

Beam

- e+/e-
- 27.6 GeV
- longitudinally polarized

- <u>Self-polarization</u> (transverse) by emission of synchrotron radiation ("Sokolov-Ternov" effect)
- <u>Spin rotators</u>

 → longitudinal polarization at HERMES IP
- 2 Compton
 <u>Polarimeters</u>: transverse and

Beam

- e⁺/e⁻
- 27.6 GeV
- longitudinally polarized

- **Self-polarization** (transverse) by emission of synchrotron radiation ("Sokolov-Ternov" effect)
- Spin rotators → longitudinal polarization at **HERMES IP**

2 Compton Polarimeters: transverse and

data taking from 1995 until 30 June 2007

 lepton-hadron PID high efficiency (>98%) low contamination (<1%)

tracking

δ**P/P<2%**

• hadron PID: RICH in 2-15 GeV

data taking from 1995 until 30 June 2007

lepton-hadron PI
 high efficiency (;
 low contaminatio

tracking

δ**P/P<2%**

• hadron PID: RICH in 2-15 GeV

transverse-momentum dependent PDFs (TMD PDFs)

semi-inclusive deep-inelastic scattering (DIS)

semi-inclusive deep-inelastic scattering (DIS)

Exclusive ω production

Exclusive ω production

Exclusive ω production

ω SDMEs

Comparison ω and ρ

exclusive ρ^{0} : Eur. Phys. J. C **62** (2009) 659

Test of unnatural parity exchange

 $u_1 = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^1 - 2r_{1-1}^1$ $\propto 2\epsilon |U_{10}|^2 + |U_{11} + U_{-11}|^2 \qquad \text{(U=unnatural-parity amplitude)}$

Kinematic dependencies

class A

no clear kinematic dependence observed

• again need for unnatural pion-pole exchange seen!

class B

- no clear kinematic dependence observed
- need for unnatural pion-pole exchange seen for unpolarized SDMEs

Longitudinal-to-transverse cross-section ratio

• R \approx 0.25 for ω , 4x smaller than for ρ

- again need for unnatural pion-pole exchange
- no Q² dependence, t' dependence?

Semi-inclusive DIS

Semi-inclusive DIS cross section

$$\begin{aligned} \frac{d\sigma}{dxdydzd\phi_{h}dP_{h\perp}^{2}d\phi_{s}} &= \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\epsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right) \\ \hline \\ \frac{d\sigma}{dxdydzd\phi_{h}dP_{h\perp}^{2}d\phi_{s}} &= \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\epsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right) \\ \hline \\ \frac{F_{UUT}}{F_{UUT}} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)}\cos(\phi_{h})F_{UU}^{\cos(\phi_{h})} + \epsilon \cos(2\phi_{h}) \\ \hline \\ \\ + \delta_{h} \sqrt{2\epsilon(1-\epsilon)}\sin(\phi_{h})F_{UL}^{\sin(\phi_{h})} \\ + \delta_{h} \left[\sqrt{2\epsilon(1-\epsilon)}\sin(\phi_{h})F_{UL}^{\sin(\phi_{h})} + \epsilon \sin(2\phi_{h})F_{UL}^{\sin(2\phi_{h})} \right] \\ + S_{L} \lambda_{e} \left[\sqrt{1-\epsilon^{2}}F_{LL} + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi_{h})F_{LL}^{\cos(\phi_{h})} \right] \\ + F_{T} \left[\sin(\phi_{h} - \phi_{S}) \left[F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \epsilon \sin(3\phi_{h} - \phi_{S}) F_{UT}^{\sin(3\phi_{h} - \phi_{S})} \right] \\ + \sqrt{2\epsilon(1+\epsilon)}\sin(\phi_{S})F_{UT}^{\sin(\phi_{S})} + \sqrt{2\epsilon(1+\epsilon)}\sin(2\phi_{h} - \phi_{S})F_{UT}^{\sin(3\phi_{h} - \phi_{S})} \right] \\ + S_{T} \lambda_{e} \left[\sqrt{1-\epsilon^{2}}\cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi_{S})F_{LT}^{\cos(\phi_{S})} \\ + \sqrt{2\epsilon(1-\epsilon)}\cos(2\phi_{h} - \phi_{S})F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right] \right\} 27 \end{aligned}$$

Semi-inclusive DIS cross section

transverse momentum distributions (TMDs)

fragmentation functions (FFs)

nucleon with transverse/longitudinal spin

quark with transverse/longitudinal spin 28

Semi-inclusive DIS cross section

transverse momentum distributions (TMDs) fragmentation functions (FFs) quark quark U U H_1^{\perp} n U D_1 f_1 -0+ 0 h 0 u С g_1 e 0 n nucleon with transverse/longitudinal spin

quark with transverse/longitudinal spin 29

c

quark transverse momentum

Collins amplitudes $F_{UT}^{\sin(\phi_h+\phi_S)} \propto h_{1T} \otimes H_1^{\perp}$

- π^+ amplitudes positive; π^- amplitudes negative
- π^{-} amplitudes increasing with x at large $P_{h\perp}$

Sivers amplitudes $F_{UT}^{\sin(\phi_h-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$

• π^+ amplitudes positive; π^- amplitudes ≈ 0

• $\pi^{\scriptscriptstyle +}$ amplitudes increasing with x at large $P_{h\perp}$

Sivers amplitudes $F_{UT}^{\sin(\phi_h-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$

• K⁺ amplitudes positive, larger than $\pi^+ \longrightarrow$ non-trivial role of sea quarks?

Sivers amplitudes $F_{UT}^{\sin(\phi_h-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$

• p amplitudes positive

sinφs

higher twist!

Inclusive transverse target single-spin asymmetry

Motivation

XF

0.8

XF

0.2 0.4

0.6

XF

Not interpretable based on collinear factorisation in leading twist

0.8

Xc

- Possible interpretations are based on $A_{UT}^{\sin(\psi)} = A_{UT}^{\sin(\psi)}$ TMD PDFs and FFs mainly Sivers and Collins effect $\lim_{t \to T} \psi$ $\sin(\psi)$ $d\sigma = d\sigma_{UU} \begin{bmatrix} 1 + i s(t) \\ sin(t) \end{bmatrix}$ $A_{IIT}^{\sin(\psi_0)} = -A_N^{M}$ And A_{N}^{M} • Need additional, experimental data

Transverse target spin asymmetry at HERMES

- Inclusive hadron electroproduction $e^\pm p^\uparrow \to h X$

 P_T wrt. lepton beam $x_F = P_L/P_{L,max}$ in ep CMS

• Azimuthal asymmetry

 $A_{UT}(x_F, P_T) = A_{UT}^{\sin\psi}(x_F, P_T) \sin\psi$ $A_{UT}^{\sin\psi} = \frac{\pi}{2} A_N$

at HERMES: $\psi \approx \phi - \phi_S$ (Sivers angle)

P_T dependence

- π^+ and K^+
 - positive
 - larger for K⁺ than for π^+
 - varying with P_T
- π^- and K⁻
 - small amplitudes

X_F dependence

- TT⁺
 - >0, increasing linearly with x_F

• TT

• <0, decreasing linearly with x_F

x_F dependence

x_F dependence

x_F dependence

Disentangling x_F and P_T dependence

• π⁺

- independent of x_F -> 1D x_F dependence from P_T correlation
- TT⁻
 - decreasing linearly with x_F As for 1D!
- note: π^- and π^+ from $p^{\uparrow}p \to hX$
 - linear dependence on x_{F} remains after slicing in P_{T}
- K+
 - ≈ constant/ slightly increasing with x_F
- K-

43

 ≈ constant/ slightly decreasing with x_F

Disentangling sub samples

- anti-tagged
 - no scattered e[±] detected
 - mainly Q²≈0
 - hard scale PT
 - $P_T > \Lambda_{QCD}$: higher twist
 - $P_T \approx \Lambda_{QCD}$: no theory predictions
 - ≈ overall results, 98% of statistics

Disentangling sub samples

- anti-tagged
 - no scattered e[±] detected
 - mainly Q²≈0
 - hard scale PT
 - $P_T > \Lambda_{QCD}$: higher twist
 - $P_T \approx \Lambda_{QCD}$: no theory predictions
 - ≈ overall results, 98% of statistics
- DIS with 0.2<z<0.7
 - mainly $\langle Q^2 \rangle > P_T$
 - TMD PDF and FF description
 - similar to Sivers amplitudes

Disentangling sub samples

- anti-tagged
 - no scattered e[±] detected
 - mainly Q²≈0
 - hard scale P_T
 - $P_T > \Lambda_{QCD}$: higher twist
 - $P_T \approx \Lambda_{QCD}$: no theory predictions
 - ≈ overall results, 98% of statistics
- DIS with 0.2<z<0.7
 - mainly $\langle Q^2 \rangle > P_T$
 - TMD PDF and FF description
 - similar to Sivers amplitudes
- DIS with z>0.7
 - $\langle Q^2 \rangle > P_T$
 - TMD PDF and FF description
 - large asymmetries for π^{\pm} , K⁺
 - exclusive processes (ρ,φ)
 favoured fragmentation

Transverse Λ polarization in inclusive measurement

Motivation

- Large transverse Λ polarization P^ observed in unpolarized hadron scattering experiments
- Vast majority: negative polarization values observed, except positive for K⁻p and ∑⁻N
- Magnitude increases with x_F and p_T , reaching plateau for $p_T=1$ GeV

Motivation

- -0.2 Ever $pp \rightarrow$ R6 p > 0.96 GeV/c 3=62 -10 _r=1.1 OLARIZATION (%) -20 -30 dis - 271 *r*ed as ^{1.0}. IS. 0.6 0.8 0.2 0.4 XF virtual photon of $\Lambda^{\uparrow}X_{0.00}$ $ep \rightarrow$ -0.05 -0.10 **۲** -0.15 -0.20 e-0.25
- Large transverse Λ polarization P^ observed in unpolarized hadron scattering experiments
- Vast majority: negative polarization values observed, except positive for K⁻p and ∑⁻N
- Magnitude increases with x_F and p_T, reaching plateau for p_T=1 GeV
- $ep \to \Lambda^{\uparrow} X$ scattering?
- SIDIS (high Q²) $\mathsf{P}^{\Lambda} \propto D_{1T}^{\perp}$, polarising FF
- current measurement: inclusive (Q²≈0)

 $\begin{array}{l} & \stackrel{-0.05}{\text{parity-violating weak decay of } \Lambda: \text{ in } \Lambda \text{ rest frame, proton} \\ & \text{preferably emitted along } \Lambda \text{ spin direction} & \stackrel{-0.10}{\text{m}^2} \\ & \stackrel{\circ}{\underline{dN}} = \frac{dN_0}{d\Omega_m} (1 + \alpha P^{\Lambda} \cos \theta_p) \end{array}$

49

Atomic-mass dependence

- positive P^{Λ} for light nuclei
- P^{Λ} consistent with zero for heavier nuclei

Kinematic dependence

 H+D: P[∆] larger in backward region —→ possibly influence of current and target fragmentation

Kinematic dependence

• H+D: P^{Λ} increases with p_{T} in backward region, while constant in forward region

Thank you for your attention

Back up

Disentangling x_F and P_T dependence

