H1 & ZEUS results II

on behalf of H1 and ZEUS Collaborations

Contents:

Diffraction

Diffractive DIS dijet production with LRG Diffractive dijet production with leading proton Exclusive dijet production in diffractive DIS H1prelim-14-014 H1prelim-14-011 ZEUS-prel-14-004

QCD & hadronic final states

Photoproduction of Isolated Photons, Inclusively and with a Jet, at HERA

Phys Lett B 730C (2014) 293

Further studies of the photoproduction of isolated photons with a jet at HERA JHEP08,(2014) 023

Measurement of multijet production in ep collisions at high Q^2 and
determination of the strong coupling a_s DESY-14-089Trijet production in DIS at HERAZEUS-prel-14-008

Search for instanton-induced processes in DIS at HERA

H1prelim-14-031

Diffraction - historical reminder

- 21 years after the observation of diffractive DIS events at HERA!
- HERA opened new era of diffraction studies

1993-1994

H1 Collab., Nucl. Phys. B429 (1994) 477

Diffractive kinematics

Q²~0 GeV² \rightarrow photoproduction Q²>>0 GeV² \rightarrow deep inelastic scattering (DIS)

HERA: ~10% of events diffractive

 $X_{\mbox{\scriptsize IP}}\mbox{-momentum}$ fraction of color singlet exchange

Experimental methods

Proton spectrometers

- free of p-dissociation background
- x_{IP} and \dot{t} measurements
- access to high x_{IP} range (IP and IR)
- small acceptance

Large Rapidity Gap

- t not measured, integrated over |t|<1GeV²
- very good acceptance at low $x_{\rm IP}$
- p-diss background about 20%

e

 $x_{I\!\!P} = m{\xi} = rac{Q^2 + M_X^2}{Q^2 + W^2}$

 $M_y = m_p$ proton stays intact, needs detector setup to detect protons

contribution should be understood

 $M_y > m_p$ proton dissociates,

Different phase space and systematics – non-trivial to compare!

Modelling of diffraction

Diffractive dijet production in DIS

Previous HERA results:

- H1, LRG measurement, JHEP 0710:042, (2007)
- ZEUS, LRG measurement, EPJC 52 (2007), 813
- H1, proton tagging -FPS, EPJC 72, (2012),1970
- H1, proton tagging VFPS, H1 preliminary (2014)

All HERA results agree within errors with NLO QCD calculations

 $\begin{array}{l} \text{DDIS Dijet Selection} \\ 4 < Q^2 < 80 \ \text{GeV}^2 \\ 0.1 < y < 0.7 \\ p_{T,1}^* > 5.5 \ \text{GeV} \\ p_{T,2}^* > 4.0 \ \text{GeV} \\ -1 < \eta_{1,2} < 2 \\ x_{I\!P} < 0.03 \\ |t| < 1 \ \text{GeV}^2 \\ M_Y < 1.6 \ \text{GeV} \end{array}$

New H1 LRG measurement -

highest luminosity compared to former HERA measurements HERA II data, luminosity ~ 290 pb⁻¹

First LRG analysis with corrections for detector effects using detector response matrix

- Measurements compared to NLO QCD predictions - program NLOJET++ using DPDF H12006 Fit B
 - ~ 14000 events accepted 11.11.2014

Diffractive dijet production in DIS

- Inner error bars of data points statistical uncertainty, outer error bars systematic uncertainties added in guadrature
- NLO QCD inner band uncertainty of hadronisation and DPDF fit added in quadrature, outer band - total uncertainty (incl.QCD scale uncertainty)
- Data well described by QCD prediction within exp. and theor. uncertainties
 Future Physics with HERA Data, DESY
 11.11.2014

Diffractive dijet production in DIS 🔃

- Experimental uncertainty of measurement in $z_{\rm IP}$ lower than DPDF fit uncertainty, gluon DPDF might be further constrained

Measurements in agreement with NLO QCD calculations, factorisation confirmed.

Diffractive dijet production in DIS

Good agreement with NLO QCD, the last bin in $z_{\rm IP}$ where DPDF is only extrapoled can be used further to improve DPDF fits

$$\alpha_s(M_Z) = 0.119 \ (4)_{\exp} \ (2)_{had} \ (5)_{DPDF} \ (10)_{\mu_r} \ (4)_{\mu_f}$$

= 0.119 \ (4)_{exp} \ (12)_{DPDF,theo}

The diffraction can consistently be described by NLO QCD using DPDF and factorisation!

Diffractive dijet photoproduction-history

Test of QCD factorisation in diffractive photoproduction

Diffractive dijet photoproduction & DIS

Diffractive dijet photoproduction & DIS

Photoproduction - data suppressed in comparison with NLO QCD by ~ 0.6DIS --data satisfactorily described by NLO QCD calculations

Diffractive dijet production - double ratio

Previous H1 measurements confirmed, factorisation breaking observed

Diffractive dijet production - double ratio

Double ratio photoproduction/DIS - uncertainites reduced!

Dependence of the suppression on E_{T} of the leading jet and z_{IP} not observed!

Exclusive dijet production in diffractive DIS

Aim: comparison to model predictions

Models predict different shape for dijet azimuthal angular distribution

Exclusive dijet production in diffractive DIS

LRG selection of diffraction, data 2003-7

Unfolded data compared to :

- 2-gluon exchange model RAPGAP 3.01/26
- Boson-Gluon-Fusion model (resolved pomeron) -RAPGAP 3.01/26

ZEUS

$\begin{array}{rll} 90 \; {\rm GeV} < & {\rm W} & < 250 \; {\rm GeV} \\ 25 \; {\rm GeV}^2 < & {\rm Q}^2 & & \\ & & {\rm x_{I\!P}} & < 0.01 \\ 0.5 < & \beta & < 0.7 \\ & & {\rm n_{jets}} & = 2 \\ 2 \; {\rm GeV} < & {\rm p_{T \; jet}} \end{array}$

ZEUS

$d\sigma \propto 1 + A\cos(2\phi)$

fit	$-0.18 \pm 0.06 (\text{stat.})^{+0.06}_{-0.09} (\text{sys.})$
2-gluon(qq) MC	-0.34 ± 0.01 (stat.)
BGF MC	$0.21 \pm 0.02 (\text{stat.})$

Negative A favours two gluon exchange model None of the models is able to describe the normalisation of x-section

Prompt photons in photoproduction, Q² < 1GeV²

Direct and resolved with fragmentation, (~10% of $\sigma)$

- Measured with and without accompanying jet (ZEUS coll. Phys Lett B 730C (2014) 293)
- Measured for direct- and resolved-enhanced regions (ZEUS coll. JHEPO8,(2014) 023)

Tested models:

- Fontannaz, Guillet, Heinrich (FGH) NLO + box diagram+ fragmentation
- Lipatov, Malyshev, Zotov (LMZ) kt-factorisation, unintegrated PD, initial parton cascade

Phase space photon : 6 < E_T < 15 GeV, -0.7 < η < 0.9 photon+jet: 4 < E_{Tjet} < 35 GeV, -1.5 < η < 1.8

Prompt photons in photoproduction, $Q^2 < 1GeV^2$

- in general both predictions agree with the data
- experimental uncertainties much smaller than theoretical ones
- n_{jet} better described by FGH than LMZ

Prompt photons in photoproduction, $Q^2 < 1GeV^2$

11.11.2014

Recent analysis cross sections measured differentially in resolved-enhanced and direct-enhanced regions

- both models are consistent within huge theoretical uncertainties with data
- FGH model gives slightly better predictions
- potential input to photon PDF fits

• direct sensitivity to a_s and gluon PDF

11.11.2014

Future Physics with HERA Data, DESY

21

Multijets at high Q^2

Normalised to NC DIS multijets $N_{iet}(P_T^{jet})/N_{NC}$ in given Q² bin

<P_T>₃ =1/3 Σp_{Ti}

- Data obtained using regularised unfolding
- NLO calculations NLOJet++ corrected for hadronisation

Scales:

 $\mu_r^2 = \tfrac{1}{2} (Q^2 + P_{\rm T}^2) \quad \mu_f^2 = Q^2$

NLO QCD describes well multijet cross sections. Experimental precision better than theoretical uncertainty.

Multijets at high Q²

11.11.2014

Fit NLO QCD with a_s(M_Z) as free parameter to absolute and norm. inclusive jet, H1 Collaboration (individually and simultaneously)

experimental uncertainties theoretical uncertainties

- most precise result when using norm. multijet cross section
- tension between dijet and other results within exp. uncertainties
- consistent results within uncertainties and with world average
- need NNLO calculations to match superior exp. precision ~ 0.7%

 $\begin{aligned} \alpha_{\rm s}({\rm M_Z}) &= 0.1165~(8)_{\rm exp}~(5)_{\rm PDF}~(7)_{\rm PDFset}~(3)_{\rm (PDF)(\alpha s)}~(8)_{\rm had}~(36)_{\mu r}~(5)_{\mu f} \\ &= 0.1165~(8)_{\rm exp}~(38)_{\rm pdf,theo} \end{aligned}$

Future Physics with HERA Data, DESY

23

24

Trijet measurements in DIS

Prediction: NLOJet++

Data well described by NLO QCD calculations

Trijet measurements in DIS

the average transverse momentum of the three leading jets

Good agreement between data and NLO calculations

Search for Instantons

11.11.2014

Confirmation of the non-perturbative QCD of SM? Theory: for HERA $\sigma \sim 10-100 \text{ pb}$ A.Ringwald,F.Schrempp a.o.

HERA I data - not observed by H1 and ZEUS, upper limits compatible with theory

Signature:

- Hard current jet
- Instanton band high multiplicity
- Isotropy in I rest frame
- Parton (u,d,s) democracy

Background needs to be reduced by at least 2 orders of magnitude

MultiVariate analysis

- \rightarrow 5 variables
- good signal/background separation
- reasonable background description

Search for Instantons

Multivariate analysis

Probability Density Estimator with Range Search (PDERS)

Training:

- RAPGAP, DJANGO background
- QCDINS (Ringwald, Schremmp)-signal

Good description of discriminator in background region **Signal region** D > 0.86

Expected Instanton signal >500 events corresponding to σ_{QCDINS} = 10 ± 2pb not seen

Upper limit?????

Search for Instantons

11.11.201

Confidence level distribution CLs & upper limit on the instanton cross section

Conclusions

- Diffractive dijet DIS cross section agree well with QCD NLO calculations, QCD factorisation confirmed
- Diffractive dijet DIS and photoproduction (PH) with a leading proton compared to NLO, QCD factorisation breaking of ~ 0.5 observed in PH (III)
- The measurement of the shape of the azimuthal angular distributions of exclusive dijets in diffractive DIS prefers 2-gluon exchange model of $q\overline{q}$ production over Resolved Pomeron model.
- Prompt photon cross sections (measured with and without jet)described within large theoretical uncertainties by NLO and $k_{\rm t}$ factorisation
- Multijets DIS cross sections described by QCD NLO, the most precise value of $a_{\rm s}$ from jet cross sections obtained
- Trijet cross sections satisfactorily described by NLO QCD
- No evidence for instantons, upper limit <1.6 pb at 95%CL, Ringwald-Schrempp's solution appears to be excluded

Future Physics with HERA Data, DESY

