Exploring HERA polarised data

→Electroweak fits → Polarised data →Contact Interactions

A. Cooper-Sarkar, V. Myronenko, H. Pirumov, O. Turkot, K. Wichmann, A. F. Zarnecki

Alexander von Humboldt

Unterstützt von / Supported b

Electroweak fits

A. Cooper-Sarkar, V. Myronenko, H. Pirumov, K. Wichmann

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Previous measurements

DESY

Alexander von Humboldt Stiftung/Foundation

Polarisation gives access to additional terms in structure functions

$$\begin{split} \tilde{F_2}^{\pm} &= F_2 + k_Z (-v_e \mp Pa_e) \cdot F_2^{\gamma Z} + k_Z^2 (v_e^2 + a_e^2 \pm 2Pv_e a_e) \cdot F_2^Z \\ x \tilde{F_3}^{\pm} &= k_Z (\pm a_e + Pv_e) \cdot x F_3^{\gamma Z} + k_Z^2 (\mp 2v_e a_e - P(v_e^2 + a_e^2)) \cdot x F_3^Z \\ (F_2, F_2^{\gamma Z}, F_2^Z) &= x \sum (e_q^2, 2e_q v_q, v_q^2 + a_q^2) (q + \overline{q}) \qquad (x F_3^{\gamma Z}, x F_3^Z) = 2x \sum (e_q a_q, v_q a_q) (q - \overline{q}) \end{split}$$

• Precision improved with respect to results based on unpolarized HERA data

in particular for vector couplings

Alexander von Humboldt

Unterstützt von / Supported b

"Restricted" fits

• Precision improved when only two couplings fitted instead of all four

Alexander von Humboldt Stiftung/Foundation

5

DESY

K. Wichmann, 12.11.14, HERA Future Workshop, HERA polarised data

Proposed analysis

- Improve experimental precision on couplings of light quarks to Z^o
 - Simultaneous fit of PDFs and couplings
 - Use all existing HERA data

- Provide HERAPDF EW fit using HERA data only
- Try HERA data + additional constrains from previous measurements

fractional uncertainty

- correlations are usually provided in publications
- Try to improve accuracy on Weinberg angle measurements

ZEUS-pol (prel.)

ZEUS-JETS

Unterstützt von / Supported b

Alexander von Humboldt

Back to future...

 $\overline{\mathbf{x}}$ Wichmann, 12.11.14, HERA Future Workshop, HERA polarised data 7

Stiftung/Foundation

DESY

Data & Tools

<u>Input data</u>

Fitting tool

 Using HERAFitter package for EW parameters determination

www.herafitter.org

- ZEUS data:
 - HERA I full data set
 - HERA II full data set (polarized)
- H1 data:
 - HERA I full data set
 - HERA II full data set (polarised)

Unterstützt von / Supported b

Alexander von Humboldt

All H1 and ZEUS inclusive UNPOLARISED measurements final we combine them

DESY

Unterstützt von / Supported by

Electroweak unification

Alexander von Humboldt Stiftung/Foundation

Unterstützt von / Supported

QCD scaling and EW effects beautifully seen

Polarization @ HERA

- From 2003 polarized lepton beam
 - Spin rotators flipping transverse polarization to longitudinal and vice versa
- Positive and negative helicities possible
- Polarization of ~30-55% achieved

Alexander von Humboldt Stiftung/Foundation

Unterstützt von / Supported b

Polarized NC DIS

- No significant dependence on polarization in NC DIS
- In agreement with the Standard Model using H1PDF2012

Alexander von Humboldt

DESY

Polarized CC DIS

- Very clear dependence on polarization in CC DIS
- In agreement with Standard Model

 $\overline{\mathbf{x}}$ Wichmann, 12.11.14, HERA Future Workshop, HERA polarised data 14

DESY

Unterstützt von / Supported by

Alexander von Humboldt

• H1

• H1

v < 0.9

0

120 [ad] ²⁰ 100 ²⁰

80

60

40

20

0

-100

-50

Alexander von Humboldt

15

DESY

 $\overline{\mathbf{x}}$

Wichmann, 12.11.14, HERA Future Workshop, HERA polarised data

Alexander von Humboldt Stiftung/Foundation

Quark-Antiquark Distribution

- Parity violating structure function $F_{2}^{\gamma Z}$ from polarized NC cross sections
- First and only measurement of $F_2^{\gamma Z}$

All H1 and ZEUS inclusive POLARISED measurements final as well lets combine them, too!

Unterstützt von / Supported b

Four-fermion eegg Contact Interactions

H. Pirumov, O. Turkot, A. F. Zarnecki, <u>K. Wichmann</u>

 An investigation of possible effects due to the virtual exchange allows to search for evidence of new particles with mass much higher than center of mass energy

Unterstützt von / Supported

Alexander von Humbold

CI - convenient method to search for:

These models most sensitive to leptons beam polarization

• Quark form factor (quark radius R_a)

First studies started with this model

DESY $\overline{\mathbf{x}}$ Wichmann, 12.11.14, HERA Future Workshop, HERA polarised data 20

Interstützt von / Sunnorted

Alexander von Humboldt

CI - convenient method to search for:

Possible new interactions

• Compositeness of quarks and leptons

Large extra dimensions

Test sensitivity of these models to leptons beam polarization

21

Search for Contact Interactions @ ZEUS

- At ZEUS searches for CI were done in Neutral Current on event distribution basis
- No deviations from SM observed limits were set for various CI models (ZEUS-prel-09-013)

PDF uncertainties in CI analysis

- ZEUS searches for CI done on event distribution basis using NC
- Treatment of PDF uncertainties very simplified, although PDF uncertainty was dominant source of systematics
- CTEQ5D used for nominal SM expectations evaluation
- Fitted data already used in PDF determination (HERA high-Q²)
 → Possible influence of CI signal on PDF fit was not considered
- Resulting PDFs would be biased
 - SM predictions obtained from fit could include some BSM contribution "hidden" in the PDFs
 - one could obtain good agreement of data with (biased) SM predictions and limits could be artificially overestimated
- Particularly important in CI analysis
- Not limited to HERA experiments

see ZEUS note by A. F. Żarnecki "CI analysis with proper treatment of PDF uncertainties"

nterstützt von / Supported by

Alexander von Humbold Stiftung/Foundation

23

Proposed method

- We propose to modify limit setting procedure
- Use HERAFitter for generating MC replicas of inclusive data sets
- Perform COMBINED analysis:
 - Include possible contribution from the BSM processes in QCD fit
 - Calculate Monte Carlo predictions with PDFs fitted including CI model, instead of Standart Model PDFs
 - For each MC generated set of cross section estimate CI parameter simultaneously with PDFs

Alexander von Humbold Stiftung/Foundation

Difference in old and new methods

resulting limits on model

parameters a bit weaker BUT —

- The only proper procedure to set limits on BSM model parameters using data used to calculate PDFs:
 - perform combined analysis, including possible contribution from BSM processes in QCD fit to data
- This approach we try to develop
- Despite resulting limits on model parameters possibly being not competitive with expected LHC limits

these would be first limits set in strictly correct way

> Alexander von Humbold Stiftung/Foundation

Summary

- HERA polarised data offer many possibilities to explore
 - Textbook plots, asymmetries, structure functions
 - Electroweak fits
 - Some of the contact interaction models

 \rightarrow we should combine HERA polarised data

- New method is proposed for contact interaction measurement
 - Including QCD fit in limit setting provides the only strictly correct way to do it