
A new approach to BFKL

Motivation: partons in the low x region cannot be free…. (see talk of 
A. Geiser)  
Outline: 
     Gluon density - analyzed by BFKL equation with running αs  
     becomes a system of quasi-bound states  
     (in contrast to the DGLAP evolution)   
      
First approach:     BFKL amplitude expressed in terms of discrete  
                      eigenfunctions only 
Present approach:  analysis in terms of a complex BFKL Green function 
                      results are similar to the first approach  
                      with an essential improvement     
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     consistent solution of BFKL 
     Sensitivity to BSM effects 
     Pomeron-Graviton Correspondence

 H. Kowalski, Hamburg  13th of November 2014 2



!
the talk is based on 

H. Kowalski, L.N. Lipatov, D.A. Ross,  arXiv:1205.6713 and 1109.0432  

H. Kowalski, L.N. Lipatov, D.A. Ross and G. Watt,  EPJC 70: 983, 2010 

J. Ellis, H. Kowalski, D.A. Ross 

H. Kowalski, L.N. Lipatov, D.A. Ross,    

3

Eur.Phys.J. C74 (2014) 2919 

http://arxiv.org/abs/1109.0432v1


!
The dynamics of Gluon Density at low x is determined by the 
amplitude for the scattering of a gluon on a gluon, described by 
the BFKL equation

 solved by the Green function method, 
in terms of the eigenfunctions of the 

kernel 
�

dk� 2K(k,k�)f�(k�) = �f�(k)

⇤

⇤ ln s
A(s,k,k�) = �(k2 � k� 2) +

�
dq2K(k,q)A(s,q,k�)

in LO, with 
fixed αs            ⌅ = �s⇤0(⇥)

Green f. method - preserves the scaling 
(conformal) invariance of BFKL 
⇒ most consistent solution of BFKL  

a possible bridge to Pomeron-Graviton?  

f�(k) = exp(i� ln k2)/k

4



Quasi-locality 
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Similarity to the Schroedinger equation  

Properties of the BFKL Kernel

Characteristic function 
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with running αs, BFKL frequency ν  becomes k-dependent, ν(k)

ν has to become a function of k because ω  is a constant 
GS resummation applied 
evaluation in diffusion (ν ≈ 0) or semiclassical approximation (ν > 0)

For sufficiently large k,  there is no longer a real solution for ν.  
The transition from real to imaginary ν(k) singles out a special value of     

                      k =kcrit, with ν(kcrit)=0.   
The solutions below and above this critical momentum kcrit have to 
match. This fixes the phase of ef’s.

�s(k2)⇤0(⇥(k)) + �2
s(k

2)⇤1(⇥(k)) = ⌅ NLO 
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Near k=kcrit, the BFKL eq. becomes the Airy eq. which is solved 
by the Airy eigenfunctions (to a very good approximation) 

with

for k<<kcrit the Airy function has the asymptotic behaviour 

The two fixed phases at k=kcrit and at k=k0 (near ΛQCD)  
lead to the quantization condition

k f�(k) = f̄�(k) = Ai
�
�(

3
2
��(k))

2
3

⇥

⇥�(k) = 2
� kcrit

k

d k�

k� |��(k�)|

k f�(k) � sin
�
⇥�(k) +

�

4

⇥

⇤�(k0) =
�

n� 1
4

⇥
⇥ + � ⇥

instead of
f�(k) = exp(i� ln k2)/k

7



Discrete Pomeron 
Solution of the 

BFKL eq 
  

The first eight 
eigenfunctions 
determined at  

η=0 
!

kcrit ≃c exp(4n) 
c  ≃ ΛQCD

⇓ kcrit

⇓ kcrit

Supersym. threshold

ω1 =0.25, ω2 =0.17

ω3 =0.12

Similarity to 
WKB solutions of 
the Schrödinger 

eq for the 
potential well  
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 Sensitivity of the frequencies ν(k) to thresholds

with SuSy 
at 10 TeV  

SM  

�SM

�SUSY
=

7
3

 change of β function in αs  (LO)



Comparison with HERA data

Discreet Pomeron Green function

Integrate with the photon and 
proton impact factors

A(k,k⇥) =
⇤

m,n

fm(k)N�1
mnfn(k⇥)

� s
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Proton impact factor

The fit is not sensitive to the particular form of the impact factor. 
The support of the proton impact factor is much smaller than the 
oscillation period of fn  and because the frequencies ν have a limited 
range

➤  many eigenfunctions have to contribute and η has to be a 
function of n.  Phase condition at      (close to ΛQCD) 

�p(k) = A k2e�bk2

� = �0

�
n� 1

nmax � 1

⇥�

the infrared boundary condition

additional parameter     which should be in the perturbative 
region but close to ΛQCD 
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The qualities of fits for various numbers of 
eigenfunctions, Q2 > 4 GeV2 (one loop αs)

➤ precise data are crucial for finding the right solution  
 the differences in the fit qualities would be negligible if the 

errors where more than 2-times larger 
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The rate of rise λ  
F2 ~ (1/x)λ

The first successful pure BFKL description of the λ plot.

Q2 (GeV2)

For many years it was claimed that BFKL analysis was not applicable to 
HERA data because of the observed substantial variation of λ with Q2
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Fits to F2 ,  Q2 > 8 GeV2,   x > 0.01  N =108,   (two loop αs)

Note: we are partially absorbing the SUSY effects into the 
 free parameters of the boundary conditions: e.g best SuSy fit with  

 η0, κ of SM gives χ2 ~ 400

 𝛘2/N= 
110/108=1.02
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Eigenvalues of the Discrete BFKL-Pomeron  

⌅n =
0.96
⇤�

· 1
⇥ + n� 1/4LO evaluation  

NLO numerical evaluation  

SM  

SM+SUSY  

lines indicate the uncertainty of the phase 
(η can only vary between 0 and π)   

�SM

�SUSY
=

7
3

difference 
between SM 

and SM+SUSY 
is 

substantially 
larger than 

the  
uncertainty of 

the phase  
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Discrete BFKL-Pomeron  

Very interesting but: 
!
why so many eigenfunctions? 
  
do we have convergence? 
!
suppression of large n contribution only by  
       the normalization condition for eigenfunctions     ~ 1/√n  
!
do we have closure ?  
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paper:  

H. Kowalski, L.N. Lipatov, D.A. Ross  + ... 

Obtain the BFKL Green Function  

from the generalized Airy operator  
(valid in diffusion and semiclassical approximation) 

Eur.Phys.J. C74 (2014) 2919 
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with

Generalized Airy Green Function  

leads to a similar pole term contribution,   Δy = ln(1/x)
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Unintegrated gluon density  

Integral over contour C  
can be evaluated in saddle 
point approximation

it agrees with the DLL limit of DGLAP

in LO, for large  t and ln(1/x)
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ωs   

 𝛂s(t) ln(1/x)  << 1  
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ω = 𝛂s 𝞆(𝝂)  

 𝛂s = 1/β0 t   
 t = ln(k2/𝚲2) 
 tc = 𝞆(𝝂=0)/ωβ0 

ω  complex  ➔ 
𝛂s  complex 

𝛂s =  1/(β0 ln(k2/𝚲2)+𝒊θ) 
assumption: 
θ <  ± 𝛑

 linear θ vs ln(k) relation    

 nonlinear θ vs ln(k) relation    
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Integrand of gluon density  
along the ω path,  at x-2  
 (linear path) k = 10 GeV  

k = 100 GeV  

k = 1000 GeV  

Integrals are convergent 
for k up to 1000 GeV 
results are path independent 

c(ω) 
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is the pole contribution the same as the  integral along the ω path?

——    path  
- - - 7 poles 

 x-2

 x-4  

 x-3 
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      1      1         0.1054E+01!
      1      2        -0.3009E-01!
      1      3         0.2040E-01!
      1      4        -0.1581E-01!
      1      5         0.1247E-01!
      1      6        -0.1070E-01!
      1      7         0.9272E-02!
      1      8        -0.8252E-02!
      1      9         0.7360E-02!
      1     10        -0.6829E-02

are the eigenfunctions orthonormal?

  ∫ 𝛑Ni(t)Nj(t) Ai(zi) Ai(zj)/√φi’ √φj’ dt =  δij ?
t = t0

t = ∞ 

      2      1        -0.3009E-01!
      2      2         0.1011E+01!
      2      3        -0.8799E-02!
      2      4         0.7016E-02!
      2      5        -0.5243E-02!
      2      6         0.4661E-02!
      2      7        -0.4059E-02!
      2      8         0.3660E-02!
      2      9        -0.3256E-02!
      2     10         0.3121E-02

      3      1         0.2040E-01!
      3      2        -0.8799E-02!
      3      3         0.1004E+01!
      3      4        -0.5448E-02!
      3      5         0.3562E-02!
      3      6        -0.3274E-02!
      3      7         0.2806E-02!
      3      8        -0.2532E-02!
      3      9         0.2224E-02!
      3     10        -0.2197E-02

the orthonormality of the computation is a proof that  
the wave functions disappear below t0 and that the 
semiclassical approximation works!!!  
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N(t)N(t’)/φ’  factor  
is droping like 1/n√n at low t

why is the pole contribution so quickly convergent?

x-ω  factor enhances the first 
poles 



Conclusions  
The Discrete-Pomeron solution of BFKL provides a very good 
description of HERA data 
!
The new complex Green function evaluation of BFKL provides a 
similar set of eigenfunctions than the previous one but which are 
faster converging. We need now O(10) poles instead of O(100) as 
previously.   
!
Self-consistency of semiclassical approximation  
!
The investigation of properties of the new solution is close to the 
end 
!
After it is finished we will apply it to HERA (F2) and LHC (DY) 
data (in the NLO version).  
Similar sensitivity to BSM effects as previously?  
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Back up slides  
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Similarity with the 
Schroedinder eq. 

for the potential well 
Feynman Lecture III 

!
BFKL eq is similar to S. eq 
for the potential well with 
the dynamically increasing 

width 

� � 0.5
1 + n

analogy 
worked out 

with 
J.Bartels 

potential 
well V 

x=log(k2)

curvature is 
proportional to 

(V-E)  
if V is modified 
at some x then 
the whole wf is 

changed

d2a(x)
dx2

=
2m

h
[V � E]a(x)
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Eigenvalues of the Discrete BFKL-Pomeron  

Comparison of the LO analytical (lines) and  
the NLO numerical evaluation (symbols)  

SM+SUSY  

SM  

difference 
between SM 

and SM+SUSY 
is 

substantially 
larger than 

the difference 
between LO 
and NLO  
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SM 

HERA 
region

LHC 
region
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Evolution of the gluon density in DPS  
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Drell-Yan processes at LHC  

Additional requirement: add valence quarks contribution, 
i.e; gluon and sea-quark contribution like in DPS and valence 
quarks like in DGLAP 
        
necessary requirement: obtain DGLAP from DP-BFKL 

Dominant process at LHC
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Pomeron - Graviton Correspondence
String theory emerged out of phenomenology  
of hadron-hadron scattering - 
Dolan-Horn-Schmid duality

▶ Veneziano amplitude 

 α(t) = α0 + α’t

▶ generalization to dual resonance models, 

Veneziano amplitude for the pomeron trajectory 
has a pole for s=t=0 with J=2 

▶ starting point for a theory of quantum gravity 

 Maldacena Conjecture: (N=4 SUSY QCD) = (CFT in ADS5×S5)  
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Back up slides  

from a talk by ZVI BERN  

Focus on N=8 supergravity and N=4 SUSY YM   
High degree of symmetry => technical simplicity 
new methods developed: 
        Modern Unitarity, symbology, BDS ... 
focus on order by order finiteness - now up to 6 loops 
Infinite loop calculation could be possible in the Multi-Regge limit 
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from a talk by ZVI BERN  
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from the Summary:  
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