A new approach to BFKL
H. Kowalski, L.N. Lipatov, D.A. Ross

Motivation: partons in the low x region cannot be free... (see talk of
A. Geiser)

Outline:
Gluon density - analyzed by BFKL equation with running as
becomes a system of quasi-bound states
(in contrast to the DGLAP evolution)

First approach: BFKL amplitude expressed in terms of discrete
eigenfunctions only
Present approach: analysis in terms of a complex BFKL Green function
results are similar to the first approach
with an essential improvement
H. Kowalski, Hamburg; 13th of November 2014
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Application to HERA and LHC data, F2 and DY processes

Physics motivation
consistent solution of BFKL
Sensitivity to BSM effects
Pomeron-Graviton Correspondence
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the talk is based on

The Green Function for BFKL Pomeron and the
Transition to DGLAP Evolution.

H. Kowalski, L.N. Lipatov, D.A. Ross, Eur.Phys.J. C74 (2014) 2919

BFKL Evolution as a Communicator Between Small
and Large Energy Scales

H. Kowalski, L.N. Lipatov, D.A. Ross, arXiv:1205.6713 and 1109.0432

Using HERA data to determine the infrared behaviour
of the BFKL amplitude

H. Kowalski, L.N. Lipatov, D.A. Ross and G. Watt, EPJC 70: 983, 2010

Evidence for the discrete asymptotically-free BFKL Pomeron from HERA data

J. Ellis, H. Kowalski, D.A. Ross Physics Letters B 668 (2008) 51-56


http://arxiv.org/abs/1109.0432v1

The dynamics of Gluon Density at low x is determined by the
amplitude for the scattering of a gluon on a gluon, described by
the BFKL equation
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‘ ‘ Green f. method - preserves the scaling
| ' (conformal) invariance of BFKL

p” = most consistent solution of BFKL

a possible bridge to Pomeron-Graviton?



Properties of the BFKL Kernel

Quasi-locality

Kk, k') = kk,z e, 6™ (In(k?/K'?))
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Similarity to the Schroedinger equation
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Characteristic function
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with running a;, BFKL frequency v becomes k-dependent, v(k)

as(k*)xo(v(k)) + o (k*)x1(v(k)) = w NLO

v has to become a function of & because o is a constant

GS resummation applied
evaluation in diffusion (v = 0) or semiclassical approximation (v > 0)

For sufficiently large &, there is no longer a real solution for v.
The transition from real to imaginary v(k) singles out a special value of

k =kcrit, with V(kcriz)=0.
The solutions below and above this critical momentum k. have to
match. This fixes the phase of ef's.



Near ki=k.i;, the BFKL eq. becomes the Airy eq. which is solved
by the Airy eigenfunctions (to a very good approximation)

3 : 3 2
kfw(k) - fw(k) = Ai <—(2§bw(k))3)
wn;:l it ] go! instead of
¢w(k) = / o ‘yw(k/)‘ fo(k) = exp(ivInk?)/k
k

for k<<k.i: the Airy function has the asymptotic behaviour
7

k fo (k) ~ sin ((k) + 7 )

The two fixed phases at k=k..: and at k=ko (near Aqcp)
lead to the quantization condition

= <n— i) —



Discrete Pomeron
Solution of the
BFKL eq

The first eight
eigenfunctions

determined at
n=0

kerie =c exp(4n)
c =Agcp

Similarity to
WKB solutions of
the Schradinger

eq for the
potential well
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Comparison with HERA data

) Discreet Pomeron Green function
- - - s S

- , , , E
ab Zf’” Worrn ) (7))
ki | - kl — g
© v, Integrate with the photon and
proton impact factors
.

A = / dg/—q)ms @8 5 (ff) fn(k)
ko Ok AP = [Fa,0) () )
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the infrared boundary condition

Proton impact factor
®,(k) = AkPe tF

The fit is not sensitive to the particular form of the impact factor.
The support of the proton impact factor is much smaller than the
oscillation period of f, and because the frequencies v have a limited
range

» many eigenfunctions have to contribute and # has to be a
function of n. Phase condition at k,, (close to Agcp)

B n—1 &
n =T"o —

additional parameter k, which should be in the perturbative
region but close to Agcp q'),,_(‘ll-(-,)l = @nlko) — 20 In (A_O> :

°()




The qualities of fits for various numbers of

eigenfunctions, Q2 > 4 GeV? (one loop asy)

Nmax XQ / A‘rdf K A b
1 10811 /125 — 146 30.0
5 350.0 /125 3.78 3.1-10° 78.0
20 286.5 /125 0.96 632 15.8
40 193.3 /125 0.84 2315 23.2
60 163.3 /125 0.78 3647 25.6
80 156.5 /125 0.73 3081 24.4
100 149.1 /125 0.69 2414 22.8
120 143.7 /125 0.66 2041 21.8

» precise data are crucial for finding the right solution
the differences in the fit qualities would be negligible if the

5k

errors where more than 2-times larger
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The rate of rise A
Fy ~ (1/x)?
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The first successful pure BFKL description of the A plot.

For many years it was claimed that BFKL analysis was not applicable to
HERA data because of the observed substantial variation of 1 with Q’



Fits to F2, 0?>8 GeV%, x>0.01 N=108, (two loop as)

R x| s (RG| m | A | b

3 125.7 | 0.555 0.288 -0.87 | 201.2 | 10.6

6 114.1 | 0.575 0.279 -0.880 | 464.8 | 15.0

10 109.9 | 0.565 0.275 -0.860 | 720.1 | 17.7 XZ/]V=

15 110.1 | 0.555 0.279 -0.860 | 882.2 | 18.6 110/108=1.02
30 117.8 | 0.582 0.278 -0.870 | 561.6 | 16.2

50 114.9 | 0.580 0.279 -0.870 | 627.4 | 16.8

90 114.8 | 0.580 0.279 -0.870 | 700.2 | 17.5

o0 122.5 | 0.600 0.274 -0.800 | 813.1 | 17.5

Table 1: Fits for N=1 SUSY at different scales. The bottom row corresponds to the Standard
Model. All fits are performed with n;.. = 100.

Note: we are partially absorbing the SUSY effects into the
free parameters of the boundary conditions: e.g best SuSy fit with
no, k of SM %ives 72 ~ 400



Eigenvalues of the Discrete BFKL-Pomeron
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Discrete BFKL-Pomeron

Very interesting but:
why so many eigenfunctions?
do we have convergence?

suppression of large » contribution only by
the normalization condition for eigenfunctions ~ 1/n

do we have closure ?



paper:

The Green Function for the BFKL Pomeron and the
Transition to DGLAP Evolution.

H. Kowalski, L.N. Lipatov, D.A. Ross + ...

Eur.Phys.J. C74 (2014) 2919
closure

Obtain the BFKL Green Function

(w —Q <t, —z%)) G.(t,t) = 6(t—1t).

from the generalized Airy operator
(valid in diffusion and semiclassical approximation)

w—0 t_»ﬁ ~ i 219 1
W at)) T N\ atzot) Nty

t = ln(]{Q/A%CD




Generalized Airy Green Function

Gu(t,t') = mN,(t)N,(t) (Bi(z(t))Ai(z(t)0(t — t) + Ai(2(£))Bi(2(t)8(t — "))

with Bi(z) = Bi(z) + c(w)Ai(2) c(w) = cot (d(w))

. m
P(w) = nnp(w:tO) - 1 — 5,(to)

leads to a similar pole term contribution, Ay = In(1/x)

ggole(t t’) — - \ ( )\wn (f’) A; (:(f)) A; (3(1‘/))

C) (Wn)(w wn) ’

1

N,(t) = (1—3(t))1/4 |
\/5 |Q,(t? Vw)l

19



Unintegrated gluon density

i(z,t) = /dwq /dt'Jwtt VO p(t),
i

Integral over contour C

be evaluated in saddle  9(,t) ~ 04, (1
can be evaluated in saddle  9(n1) ~ 5 0o, TG A
point approximation— _

os(t) In(1/x) <<1

Soe X ~oe >
wh wWg
05 = \/CAQ()
Y __----17"in LO, for large tand In(1/x)
o t—r>voo —t/2 ﬁ
Y = In(1/x) Au(?) e ()

it agrees with the DLL limit of DGLAP
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M = s X(V)

Ols — 1/'30 t
t = In(k%/A2)
tc = x(v=0)/®po

O complex =>
s complex

os= 1/(PoIn(k?*/A?)+i0)
assumption:
0< xm
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Integrals are convergent °

for kK up to 1000 GeV ‘“

results are path independent 4

2

Integrand of gluon density
along the ® path, at x?

k=1000 GeV |




is the pole contribution the same as the integral along the ® path?

GPoe(t,t") N,
=2 7 v )(w o)
'-c 3
oN 10°
— path X"4

- - -7 poles
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are the eigenfunctions orthonormal?

t=o

| ENIONi(t) Ai(z) Ai(z)Noi Vi’ dt = 85 2

t=1to
1 1 0.1054E+01 2] -0.3009E-01 B 0.2040E-01
2 -0.3009E-01 2 a2 0.1011E+01 S -0.8799E-02
I 58 0.2040E-01 2w D -0.8799E-02 3 3 0.1004E+01
Jierid -0.1581E-01 2wl 0.7016E-02 34 -0.5448E-02
1 5 0.1247E-01 2,575 -0.5243E-02 3 5 0.3562E-02
1 6 -0.1070E-01 2 6 0.4661E-02 3 6 -0.3274E-02
1 7 0.9272E-02 25 -0.4059E-02 Sl 0.2806E-02
l37:228 -0.8252E-02 2 <8 0.3660E-02 358 -0.2532E-02
1 9 0.7360E-02 202529 -0.3256E-02 B0 0.2224E-02
1 10 -0.6829E-02 2 10 0.3121E-02 3 10 -0.2197E-02

the orthonormality of the computation is a proof that
the wave functions disappear below t) and that the
semiclassical approximation works!!!
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why is the pole contribution so quickly convergent?

ratios of norms

0.6

N(t)N(t’)/¢@’ factor
is droping like 1/nVn at low t

=

5

x® factor enhances the first 4
poles
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Conclusions

The Discrete-Pomeron solution of BFKL provides a very good
description of HERA data

The new complex Green function evaluation of BFKL provides a
similar set of eigenfunctions than the previous one but which are
faster converging. We need now O(10) poles instead of O(100) as
previously.

Self-consistency of semiclassical approximation

The investigation of properties of the new solution is close to the
end

After it is finished we will apply it to HERA (F2) and LHC (DY)
data (in the NLO version).

Similar sensitivity to BSM effects as previously?
27
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Similarity with the
Schroedinder eq.
for the potential well
Feynman Lecture III

BFKL eq is similar to S. eq
for the potential well with
the dynamically increasing

width

14+n

10 -

0 20 40 60 80 100 120
n

analogy
worked out
with
J .Bartels

__ curvature is

@

el

proportional to

. (V-E)

if V is modified

\ /\a‘r some x then

'vl

*the whole wf is
changed



Eigenvalues of the Discrete BFKL-Pomeron

Comparison of the LO analytical (lines) and
the NLO numerical evaluation (symbols)
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n

difference
between SM
and SM+SUSY
is
substantially
larger than
the difference

%0 10¢ between LO

and NLO
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Evolution of the gluon density in DPS

i) = 1 [ao [25 (52) " dme,0)
W A’z A, w /g TU P ]
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Drell-Yan processes at LHC

Dominant process at LHC

q

Additional requirement: add valence quarks contribution,
i.e; gluon and sea-quark contribution like in DPS and valence
quarks like in DGLAP

necessary requirement: obtain DGLAP from DP-BFKL

34



Pomeron - Graviton Correspondence

I l L) ] T l T L) T

String theory emerged out of phenomenology,|
of hadron-hadron scattering -
Dolan-Horn-Schmid duality

L a(t) =apt+a’t o—  [ps]

g 13 (f ) AVERPVURY 13 ¥

E =~ B(t)(— )
“rmyyymy e
» Veneziano amplitude

LT — ()T =ty (5)]
Aptp gt (8,8) = g5 AR =
ntr ntr (S_f) go 1—'[1 . ap (S) . ap (f )] N

» generalization to dual resonance models, M=t (GeV)®

Veneziano amplitude for the pomeron trajectory
has a pole for s=t=0 with J=2

P starting point for a theory of quantum gravity

Maldacena Conjecture: (N=4 SUSY QCD) = (CFT in ADS5xS>)

35



from a talk by ZVI BERN

? Is a UV finite theory of gravity possible?

K = \/327TGN +<— Dimensionful coupling

rx pHpY
- L owp s
Gravity: /

~; (2m)P propagators

L dPp;  (gpi)--
(27r)D propagators

Gauge theory: /

Extra powers of loop momenta in numerator
means integrals are badly behaved in the UV

Focus on N=8 supergravity and N=4 SUSY YM
High degree of symmetry => technical simplicity
new methods developed:
Modern Unitarity, symbology, BDS ...
focus on order by order finiteness - now up to 6 loops
Infinite loop calculation could be possible in the Multi-Regge limit



Complete Three Loop Result

ZB, Carrasco, Dixon, Johansson, Kosower, Roiban; hep-th/0702112
ZB, Carrasco, Dixon, Johansson, Roiban arXiv:0808.4112 [hep-th]

Obtained via maximal cut method: from a talk by ZVI BERN

2 3 2 -
/3

) 7 Tis — Qki -k
o x J J
N
| (a) K} 1 (L) 4
p 3 2\ /3
d N 7
o] X “ LN ,
e @ N Three-loop is not only
o 3 2 . 2 3 ° . - T
N— : ultraviolet finite it is
52 S TasT. §3 7387, s s
* TuTe & T il “superfinite”—cancellations
PN N v Y beyond those needed for
2 3 -
(8(726 + 7T36) + t(T1s + T2s) + st)° . + ﬁllltelleSS!
+(5%(76 + T36) = 13(T1s + T25) ) (N7 + Taw + Teo + Tano) ’ ¢ ’
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bu?(Ty7730 + T2sTe10)
s U
2 y
(s745 — t7a6)* — Tar(s% 745 + 17746 7 6
~T1s(*7gr + uTye) — Tao(P7ar + P 1)
+35°t + 12st? — %l%atu /
l/ ? 4
1 41

37



Scattering
In Planar N=4 Super-Yang-Mills Theory
and the Multi-Regge-Limit

Lance Dixon (SLAC)
ICHEP Melbourne, Australia July 5, 2012

from the Summary:

* Multi-Regge limit of 6-gluon amplitude may well be first
case solved to all orders






