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Q2 x N d2σ/dxdQ2 δstat δsys δu δ1 δ2 δ3 δ4

(GeV2) ( pb/GeV2) (%) (%) (%) (%) (%) (%) (%)

5250 0.11 114 2.59e− 02 +9.4
−9.4

+3.4
−3.2

+2.9
−2.9

−0.6
+1.1

−0.0
+0.1

−1.3
+1.3

+0.0
−0.0

5250 0.14 117 2.12e− 02 +9.2
−9.2

+3.6
−3.4

+3.1
−2.7

−1.8
+1.6

−0.6
+0.6

+0.4
−0.4

+0.0
−0.0

5250 0.17 117 2.06e− 02 +9.2
−9.2

+3.2
−3.4

+3.1
−3.1

−1.2
+0.5

−0.5
+0.3

+0.2
−0.2

+0.0
−0.0

5250 0.20 91 1.11e− 02 +10.5
−10.5

+3.3
−3.1

+3.1
−2.9

−0.5
+1.0

+0.0
+0.2

−0.7
+0.7

+0.0
−0.0

5250 0.25 92 9.27e− 03 +10.4
−10.4

+3.6
−4.2

+3.1
−3.2

−1.1
+1.5

−0.4
+0.1

+0.4
−0.4

+0.0
−0.0

5250 0.29 52 5.19e− 03 +13.9
−13.9

+4.4
−3.9

+3.7
−3.7

−0.2
+1.6

−0.3
+0.3

−1.0
+1.0

+0.0
−0.0

5250 0.35 42 3.66e− 03 +15.4
−15.4

+4.9
−5.3

+4.2
−4.3

−2.4
+2.3

−0.3
+0.4

+0.2
−0.2

+0.0
−0.0

5250 0.41 14 1.27e− 03 +30.3
−23.2

+6.0
−14.7

+5.4
−5.5

−1.9
+2.4

−0.2
+0.0

−0.3
+0.3

+0.0
−0.0

5250 0.47 21 1.83e− 03 +21.8
−21.8

+6.8
−7.1

+6.7
−7.0

−1.3
−0.3

−0.1
+0.3

+0.4
−0.4

+0.1
−0.1

5250 0.53 14 1.14e− 03 +30.3
−23.2

+9.1
−10.9

+8.6
−8.6

−2.3
+2.6

+0.0
+0.0

+0.6
−0.6

+0.1
−0.1

5250 0.62 5 1.76e− 04 +55.2
−35.2

+11.1
−10.5

+9.2
−9.1

−3.2
+4.6

+0.1
+0.1

+3.7
−3.7

+0.6
−0.6

7000 0.12 93 1.61e− 02 +10.4
−10.4

+4.0
−5.1

+3.3
−3.6

−1.1
+0.8

+0.8
−0.5

−0.7
+0.7

+0.0
−0.0

7000 0.14 89 1.25e− 02 +10.6
−10.6

+3.7
−5.2

+3.4
−3.5

−1.3
+1.2

−0.5
+0.2

−0.9
+0.9

+0.0
−0.0

7000 0.18 68 7.02e− 03 +12.1
−12.1

+3.9
−3.6

+3.4
−3.4

−0.6
+0.6

−0.6
+0.4

−0.4
+0.4

+0.0
−0.0

7000 0.22 56 5.60e− 03 +13.4
−13.4

+4.2
−4.2

+3.9
−3.9

−1.4
+1.1

−0.4
+1.0

−0.4
+0.4

+0.0
−0.0

7000 0.26 49 3.79e− 03 +14.3
−14.3

+4.6
−4.8

+3.9
−4.0

−0.2
+2.1

+0.2
−0.2

−0.5
+0.5

+0.0
−0.0

7000 0.32 41 2.70e− 03 +15.6
−15.6

+5.1
−4.7

+5.3
−4.5

−1.4
+0.8

−0.4
+0.4

−0.2
+0.2

+0.0
−0.0

7000 0.38 23 1.52e− 03 +20.9
−20.9

+6.4
−6.2

+5.5
−5.5

−1.8
+1.7

−0.7
+0.4

+2.0
−2.0

+0.0
−0.0

7000 0.44 17 1.15e− 03 +27.2
−21.3

+8.4
−7.9

+7.1
−7.1

−2.7
+2.7

−0.0
+0.2

−2.4
+2.4

+0.0
−0.0

7000 0.50 8 5.38e− 04 +41.8
−29.4

+9.7
−10.3

+9.5
−9.5

−1.6
+1.4

−0.3
+0.4

+2.4
−2.4

+0.1
−0.1

7000 0.56 4 2.37e− 04 +63.2
−38.2

+12.3
−11.8

+11.3
−11.3

−3.4
+3.4

+0.1
−0.0

+1.2
−1.2

+0.2
−0.2

7000 0.66 10 2.30e− 04 +36.7
−26.8

+12.6
−13.6

+12.1
−12.3

−4.3
+2.5

−0.3
−0.0

+2.0
−2.0

+0.9
−0.9

9500 0.17 76 6.77e− 03 +11.5
−11.5

+5.6
−7.7

+4.9
−4.9

−2.0
+2.3

+0.2
−0.2

−0.6
+0.6

+0.0
−0.0

9500 0.21 53 3.87e− 03 +13.7
−13.7

+5.8
−5.1

+4.3
−4.5

−1.1
+1.8

−0.7
+0.4

−1.1
+1.1

+0.0
−0.0

9500 0.25 40 2.27e− 03 +15.8
−15.8

+4.8
−4.9

+4.5
−4.5

−2.0
+1.5

+0.2
+0.4

+0.1
−0.1

+0.0
−0.0

9500 0.31 27 1.50e− 03 +19.2
−19.2

+5.7
−8.1

+5.2
−5.3

−2.6
+1.5

−0.5
+0.2

+1.5
−1.5

+0.0
−0.0

9500 0.36 19 8.89e− 04 +25.5
−20.3

+6.6
−6.1

+5.9
−5.9

−1.0
+1.9

−0.4
+0.2

−0.3
+0.3

+0.0
−0.0

9500 0.42 12 5.64e− 04 +33.1
−24.8

+11.3
−7.5

+13.4
−7.3

−1.0
+2.4

−0.8
+0.5

−0.8
+0.8

+0.0
−0.0

9500 0.48 8 3.63e− 04 +41.7
−29.4

+10.5
−10.4

+9.2
−9.2

−2.6
+2.4

−0.4
+0.6

−3.4
+3.4

+0.0
−0.0

9500 0.54 5 2.31e− 04 +55.2
−35.2

+14.3
−13.7

+12.5
−12.2

−1.7
+3.6

−0.2
+0.6

+5.7
−5.7

+0.1
−0.1

9500 0.61 4 1.39e− 04 +63.3
−38.3

+15.5
−15.4

+14.6
−14.8

−4.2
+4.2

+0.0
−0.1

+0.4
−0.4

+0.4
−0.4

9500 0.71 1 1.50e− 05 +158.0
−58.0

+21.1
−19.8

+18.9
−18.9

−3.3
+4.5

−0.4
+0.3

+4.8
−4.8

+1.3
−1.3

Table 1: Continuation 4.
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Q2 xedge N I(x) δstat δsys δu δ1 δ2 δ3 δ4

(GeV2) ( pb/GeV2) (%) (%) (%) (%) (%) (%) (%)

725 0.63 504 7.71e− 02 +4.5
−4.5

+2.8
−3.2

+1.5
−1.3

+1.3
−2.0

+0.0
−0.1

+1.9
−1.9

+0.3
−0.3

875 0.64 671 5.12e− 02 +3.9
−3.9

+2.3
−1.9

+1.2
−1.2

−0.1
+1.0

+0.0
−0.0

+1.3
−1.3

+0.5
−0.5

1025 0.66 414 2.75e− 02 +4.9
−4.9

+3.4
−3.6

+1.5
−1.5

−1.6
+0.8

+0.0
−0.0

+2.7
−2.7

+0.6
−0.6

1200 0.67 368 1.80e− 02 +5.2
−5.2

+3.7
−2.9

+1.7
−1.6

−1.5
+2.5

+0.0
−0.0

+1.4
−1.4

+0.8
−0.8

1400 0.68 202 1.04e− 02 +7.0
−7.0

+3.5
−3.8

+2.1
−2.0

−1.8
+1.3

+0.0
−0.0

+2.1
−2.1

+1.0
−1.0

1650 0.69 173 5.91e− 03 +7.6
−7.6

+4.4
−4.1

+2.3
−2.2

−1.7
+2.0

+0.1
−0.1

+2.6
−2.6

+1.2
−1.2

1950 0.71 74 2.51e− 03 +11.6
−11.6

+5.2
−5.1

+3.1
−3.0

−1.9
+1.9

+0.0
−0.1

+3.1
−3.1

+1.6
−1.6

2250 0.73 51 1.84e− 03 +14.0
−14.0

+7.1
−7.6

+4.1
−4.1

−3.0
+2.2

+0.0
−0.0

+4.9
−4.9

+2.0
−2.0

2600 0.75 36 9.65e− 04 +16.7
−16.7

+6.9
−6.6

+4.8
−4.8

−1.9
+2.6

+0.0
−0.0

+3.0
−3.0

+2.5
−2.5

3000 0.77 19 4.90e− 04 +25.5
−20.3

+11.0
−10.9

+6.6
−6.6

−3.9
+4.1

+0.1
−0.1

+6.8
−6.8

+3.2
−3.2

3500 0.79 17 3.01e− 04 +27.2
−21.3

+11.6
−11.5

+8.0
−7.8

−3.3
+3.5

+0.1
−0.2

+6.4
−6.4

+4.0
−4.0

4150 0.81 5 8.19e− 05 +55.2
−35.2

+14.6
−15.0

+11.9
−11.8

−3.7
+2.1

+0.0
−0.3

+6.4
−6.4

+5.1
−5.1

5250 0.85 3 1.98e− 05 +75.7
−42.3

+18.6
−18.1

+14.3
−14.3

−2.9
+4.7

+0.2
+0.0

+8.1
−8.1

+6.9
−6.9

7000 0.87 1 5.56e− 06 +158.0
−58.0

+29.0
−26.4

+24.3
−24.1

−3.7
+10.7

−0.4
+0.0

−1.3
+1.3

+9.4
−9.4

9500 0.89 1 5.60e− 06 +158.0
−58.0

+58.3
−63.4

+53.5
−53.5

−19.0
−0.7

+0.0
+0.0

+19.2
−19.2

+13.0
−13.0

Table 3: The integrated cross section, I(x) (see Eq.(11)), for NC e−p scattering at
√
s =

318GeV as a function of Q2. Also quoted are the lower limit of integration, xedge, the

number of events reconstructed in the bin, N , the statistical uncertainty, δstat, the total

systematic uncertainty, δsys, the total uncorrelated systematic uncertainty, δu, followed

by the bin-to-bin correlated systematic uncertainties, δ1– δ4 defined in Section 9. The

luminosity uncertainty of 1.8% is not included.
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BRIEF ARTICLE

THE AUTHOR

1. Introduction

The question on how to best use the new data at high-x has come up, and this note
describes how the data can be used in a fit to extract the parton pdfs. The issue of how to
fit is relevant, since many of the bins have only a few, or zero, events, and questions have
come up concerning the pdf uncertainty in the extracted cross sections, minimal purity
requirements, etc. If one uses the number of measured events in the fits, then these issues
are no longer relevant. The main point is that the fitters should provide predictions for the
number of events expected in the bins in which event counts are reported, and then use
Poisson statistics to calculate the probability for the observed number of events given this
expectation. In this way (rather than fitting an estimate of the differential cross section at
a point), the full power of the data can be brought to bear on the extraction of the pdfs.
However, we need to provide extra information for this to be possible.

2. Why use the bin counts

The standard way to estimate the differential cross section at an (x, Q2) point within a
bin is given by

dσData

dxdQ2
=

dσtheory

dxdQ2

σData

σtheory

with

σData =
N

La
where we will choose for concreteness N = 2 as the observed number of events in our
example below. L is the integrated luminosity in the data set, and a is the acceptance in
the bin:

a =
NMC

reconstructed

NMC
generated

.

Note that there is typically negligible theory uncertainty, and the fractional uncertainty
on the differential cross section is the same as the fractional uncertainty on the cross section.
We will initially ignore the systematic uncertainty, so the we can work with the number
of predicted events and the uncertainty on this quantity. The factors translating event
numbers to cross sections are (for now) assumed to have no uncertainty.

The statistical uncertainty on the cross section is reported in various ways:
1
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2 THE AUTHOR

(1) The ’old-fashioned-standard-prescription’ σ ± δσ:

δσ =
√

N

La
=

σ√
N

.

For N = 2, we have a fractional uncertainty of δσ/σ = 0.71. For N = 0, this
prescription breaks down and it has often been the case that the uncertainty for
N = 1 is taken.

(2) with confidence levels σ+δup

−δdown (central interval definition):

δup →
i=N−1∑

i=0

P (N |σ + δup) ≤ 0.16

δdown →
i=∞∑

i=N+1

P (N |σ − δdown) ≤ 0.16

(3) with credibility intervals σ+δup

−δdown :
∫ σ+δup

σ−δdown
P (σ′|N)dσ′ = 0.68

where P (σ|N) is the posterior probability density for σ given the measured number
of events. For N = 2 and using a flat prior on the expected number of events gives
δdown = 0.63 and δup = 2.62

Now imagine that we have two pdf sets, one which predicts ν1 = 0.01 and a second
which predict ν2 = 4.5 events in the bin. The standard fitting approach is to calculate
a χ2 by comparing the measured differential cross section to the predicted one, using the
fractional uncertainty ON THE DATA quoted above. The resulting contributions to χ2

using the three prescriptions given above are:
(1) ’old-fashioned-standard-prescription’ :

χ2
1 = (N − ν1)2/N = 2.0

χ2
2 = (N − ν2)2/N = 3.1

We see that the smaller prediction is preferred.
(2) confidence levels (similar to credibility below - not yet done):

(3) Credibility interval:

χ2
1 = (N − ν1)2/(0.63)2 = 10.0

χ2
2 = (N − ν2)2/(2.62)2 = 0.9

In this case, there is a strong preference for the higher prediction.
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2 THE AUTHOR

(1) The ’old-fashioned-standard-prescription’ σ ± δσ:

δσ =
√

N

La
=

σ√
N

.

For N = 2, we have a fractional uncertainty of δσ/σ = 0.71. For N = 0, this
prescription breaks down and it has often been the case that the uncertainty for
N = 1 is taken.

(2) with confidence levels σ+δup

−δdown (central interval definition):

δup →
i=N−1∑

i=0

P (N |σ + δup) ≤ 0.16

δdown →
i=∞∑

i=N+1

P (N |σ − δdown) ≤ 0.16

(3) with credibility intervals σ+δup

−δdown :
∫ σ+δup

σ−δdown
P (σ′|N)dσ′ = 0.68

where P (σ|N) is the posterior probability density for σ given the measured number
of events. For N = 2 and using a flat prior on the expected number of events gives
δdown = 0.63 and δup = 2.62

Now imagine that we have two pdf sets, one which predicts ν1 = 0.01 and a second
which predict ν2 = 4.5 events in the bin. The standard fitting approach is to calculate
a χ2 by comparing the measured differential cross section to the predicted one, using the
fractional uncertainty ON THE DATA quoted above. The resulting contributions to χ2

using the three prescriptions given above are:
(1) ’old-fashioned-standard-prescription’ :

χ2
1 = (N − ν1)2/N = 2.0

χ2
2 = (N − ν2)2/N = 3.1

We see that the smaller prediction is preferred.
(2) confidence levels (similar to credibility below - not yet done):

(3) Credibility interval:

χ2
1 = (N − ν1)2/(0.63)2 = 10.0

χ2
2 = (N − ν2)2/(2.62)2 = 0.9

In this case, there is a strong preference for the higher prediction.
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So, which pdf is favoured depends very much on how the uncertainty in the χ2 is
defined. Note that in all three cases, there is very little distinguishing power between
ν = 0.1, 0.01, 0.001, since the what is used is the difference between the measured number
of events and the prediction, and the uncertainty does not change.

Now we see what happens if instead of performing a χ2 fit using the differential cross
section, we instead compare the predicted and observed event counts in the bin. The
probabilities are

P (N = 2|ν1 = 0.01) =
e−0.010.012

2!
= 5 · 10−5

P (N = 2|ν2 = 4.5) =
e−4.54.52

2!
= 0.11 .

The preference for the larger prediction is even more pronounced. We see that in this case,
there is very strong discriminating power between the different predictions, and very differ-
ent probabilities would be obtained for ν = 0.1, 0.01, 0.001. This is because we are making
use of the probability to observe the given number of events assuming the expectation -
the statistical fluctuations are handled correctly. Note also that N = 0 poses no problem
in the fitting.

The advantage comes not just in using the full statistical power of the data, but also
in reduced systematic uncertainties. The reason is that a significant component to the
systematic uncertainty comes from the unknown pdf used to estimate the acceptance, a.
This acceptance comes from integrating the probability over the full phase space to find
an event in our measured bin, and this will depend on the distribution of events in the
full phase space. However, if the probability for finding an event in our measured bin is
provided as a function of (x, Q2), then the acceptance a can be recalculated for any chosen
pdf and this source systematic uncertainty becomes very small.

3. Information required for event count fitting

In order to make full use of the data as outlined above, more information has to be
provided than is normally the case. We need to supply the information which allows the
pdf fitters to calculate a predicted number of events in each of the bins in which we report an
event count. This prediction has to be calculated for every instance of the pdf parameters
by integrating over the full kinematic phase space:

ν(∆x,∆Q2) =
∫

∆x,∆Q2

∫
dνpred(x′, Q′2)

dx′dQ′2 P (x, Q2|x′, Q′2)dx′dQ′2dxdQ2

where dνpred(x′,Q′2)
dx′dQ′2 is the probability density to have an event with true kinematics at

(x′, Q′2) and P (x, Q2|x′, Q′2) is the probability density to reconstruct an event at (x, Q2)
given the true kinematics at (x′, Q′2). We approximate this integral with

νj =
∑

i

aijνj
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where νj is the number of predicted events in a (∆x,∆Q2) bin labeled j and νi is the
number of true events in a (∆x′,∆Q′2) bin labeled i. The quantity aij is the probability
for one event in bin i to be reconstructed in bin j. It is calculated from the MC as

aij =
∑Mi

k=1 ωkI(k ∈ j)
∑Mi

k=1 ωk

with Mi the number of events generated in bin i, ωk the weight given to the kth event, and
I(k ∈ j) = 1 if event k is reconstructed in bin j, else I(k ∈ j) = 0.

The matrix aij should be provided with the bins i covering the full phase space which
can give non-negligible contribution to our predictions. I.e., the bins defined in i should go
beyond the bins defined in j, and can be made finer to reduce migration uncertainties.

The probability for the model to yield the data is

P (D|#λ) =
∏

j

e−νj("λ)νj(#λ)nj

nj !

with #λ the vector of parameters used to parametrize the pdfs and nj the number of data
events measured in bin j. This probability can be converted to an equivalent χ2 if such a
fit is being used.

To take account of the systematic uncertainties, we need to further provide the following
matrices:
δaunc The matrix of uncorrelated systematic uncertainties (given as a difference from the

nominal matrix a). E.g., MC statistical uncertainties would enter into this matrix.
The MC statistical uncertainty for aij is

δaunc
ij =

√∑Mi
k=1 ω2

kI(k ∈ j)
∑Mi

k=1 ωk

Note that we should have probably at least 25 MC events in all bins and no large
spread of weights for this to be reasonably accurate.

δal The correlated systematic uncertainties. For each of our correlated systematic
uncertainties, l, we generate a new matrix al given from a one sigma deviation in
the quantity of interest, and then calculate

δal
ij = al

ij − aij .

The prediction including systematic uncertainties is

ν ′j = νj +
∑

i

xiδ
unc
ij νi +

∑

l

xl

∑
δl
ijνi .

The x’s are drawn from a Normal distribution of width 1, and a penalty is added to the
χ2 of

∑
k x2

k.
Note that there is no additional statistical uncertainty from the data, and the systematic

uncertainty from the pdf should also be negligible since it only enters as variations of the
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