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Motivation

Our information on the very high x behavior of the parton densities is primarily theoretical.
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Motivation

The PDF’s are poorly determined at high-x. Sizeable differences despite the fact that fits use
similar parametrization xqo(1-x)". Is it possible to improve this situation ?
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ZEUS high-x analysis
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HERA kinematics

Jet found No jet found

X>X
X<XEdge Edge
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Jet definition: E;>10 GeV, 6,,,>0.12 only 0,1 jet events used
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Fine-grained cross section
measurements

Integrated bin
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ZEUS Collaboration; H. Abramowicz et al.
Measurement of Neutral Current ep Cross Sections at High Bjorken x with the ZEUS Detector
Phys. Rev. D 89 (2014) 072007
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carefully



DATA/THEORY
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Error bars indicate the range of
probable values for the
underlying cross section given
the measured data. How to
use this information in a fit ?

Use the observed number of
events & calculate the
probability to see this number
given the model expectation.
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Integrated bins

Q2 Ledge N I ($ ) Ostat 5sys Oy 01 02 03 04
(GeV?) (pb/GeV?) | (%) | (%) || (%) | (%) | (%) | (%) | (%)
725 | 0.63 | 504 | 7.7le—02 | I | 50 A5 | S | 0 MY A0l
875 | 0.64 | 671 | 512e—02 | T35 | 3o || 3| 200 | oo | Tin | foE
1025 | 0.66 | 414 | 2.75¢ —02 | T30 | T3 | Fi2 | oS | oo | 3T tos
1200 | 0.67 | 368 | 1.80e —02 | *22 | &30 | O 32 | 00 | Did | Tos
1400 | 0.68 | 202 | 1.0de—02 | *T9 | 435 || 420 ) S18 | 400 | 421 ) 410
1650 | 0.69 | 173 | 591e —03 | I8 | 34 [ #3330 | 01 | B38| 3
1950 | 0.71 | 74 | 2.51e—03 | T8 | 23 B30 | o [ E00 | BB ] A
2250 | 0.73 | 51 | 1.84e—03 | *140 | TLi 1 Tl | 30 1 00 | e | a0
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7000 | 0.87 | 1 | 5.56e—06 | TG | 1554 | 247 | Tior | Soo | 113 | Toa
9500 | 0.89 | 1 | 5.60e—06 | 2%" | Tg3i | D355 | o | Too | Ti02 | Tizo
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2. WHY USE THE BIN COUNTS

The standard way to estimate the differential cross section at an (x, Q%) point within a
bin is given by
dO.Data do.theory O.Data

ddeQ - dde2 o theory

with
N
O_Data —_
La
where we will choose for concreteness N = 2 as the observed number of events in our
example below. L is the integrated luminosity in the data set, and a is the acceptance in

the bin:
MC

reconstructed

MC
generated
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(1) The ’old-fashioned-standard-prescription’ o =+ d,:

VN o

La /N

For N = 2, we have a fractional uncertainty of ,/0c = 0.71. For N = 0, this
prescription breaks down and it has often been the case that the uncertainty for
N =1 is taken.

(2) with confidence levels ajngwn (central interval definition):
i=N—1
0" — Y P(Nlo+6")<0.16
i=0
gl — Y P(N|o —§%") < 0.16
i=N+1
(3) with credibility intervals afgzswn: 4 ’Z ’é 2

o+44"P
/ P(o'|N)do! = 0.68

_5down

-0.675

given the measured number
pected number of events gives

where P(o|N) is the posterior probability density for
of events. For NV = 2 and using a flat prior on the
§4oWn = (.63 and 0" = 2.62
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Now imagine that we have two pdf sets, one which predicts v; = 0.01 and a second
which predict o = 4.5 events in the bin. The standard fitting approach is to calculate
a x? by comparing the measured differential cross section to the predicted one, using the
fractional uncertainty ON THE DATA quoted above. The resulting contributions to y?
using the three prescriptions given above are:

(1) ’old-fashioned-standard-prescription’ :
x; = (N—11)?/N=20
xs = (N—1)?/N=31

We see that the smaller prediction is preferred.
(2) confidence levels (similar to credibility below - not yet done):

(3) Credibility interval: . {\\
L

i = (N —11)2/(0.63)% =10.0
3 = (N —15)%/(2.62)>=0.9

In this case, there is a strong preference for the higher prediction.
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[

Now we see what happens if instead of performing a y? fit using the differential cross
section, we instead compare the predicted and observed event counts in the bin. The
probabilities are

—0.010.012
P(N = 2|1 =0.01) = & T =5-107
—4.54 2
P(N = 2Juy = 45) = % —0.11 .

The preference for the larger prediction is even more pronounced. We see that in this case,
there is very strong discriminating power between the different predictions, and very differ-
ent probabilities would be obtained for » = 0.1,0.01,0.001. This is because we are making
use of the probability to observe the given number of events assuming the expectation -
the statistical fluctuations are handled correctly. Note also that N = 0 poses no problem
in the fitting.
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3. INFORMATION REQUIRED FOR EVENT COUNT FITTING

In order to make full use of the data as outlined above, more information has to be
provided than is normally the case. We need to supply the information which allows the
pdf fitters to calculate a predicted number of events in each of the bins in which we report an
event count. This prediction has to be calculated for every instance of the pdf parameters
by integrating over the full kinematic phase space:

2 deTed QQ) 200 V2N 30 1)2 2
v(Azx, AQ7) /A AQ2/ 40" Pz, Q%z", Q")dx'dQ“dzdQ

red 12
where dx,ng;ZQ ) is the probability density to have an event with true kinematics at

(', Q") and P(z,Q?|z',Q"?) is the probability density to reconstruct an event at (z,Q?)
given the true kinematics at (z’, Q™). We approximate this integral with

Vj: E aijl/L

)
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with M; the number of events generated in bin i, wy the weight given to the k' event, and
I(k € j) =1 if event k is reconstructed in bin j, else I(k € j) = 0.

The matrix a;; should be provided with the bins ¢ covering the full phase space which
can give non-negligible contribution to our predictions. I.e., the bins defined in ¢ should go
beyond the bins defined in j, and can be made finer to reduce migration uncertainties.

The probability for the model to yield the data is

e ViV v (X))

nj!

PN =]]

J
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LAY L RS ALL e e

To take account of the systematic uncertainties, we need to further provide the following
matrices:

0a"¢ The matrix of uncorrelated systematic uncertainties (given as a difference from the
nominal matrix a). E.g., MC statistical uncertainties would enter into this matrix.
The MC statistical uncertainty for a;; is

M; :
unc \/Zk:l wil(k < ])
Sainc —
ij M;
D k1 Wk
Note that we should have probably at least 25 MC events in all bins and no large
spread of weights for this to be reasonably accurate.
da' The correlated systematic uncertainties. For each of our correlated systematic
uncertainties, [, we generate a new matrix a' given from a one sigma deviation in
the quantity of interest, and then calculate

| R | o
5a/ij—a/2'j_a/2] .

The prediction including systematic uncertainties is
I/} =V; + Z ZCZ'(S%HCI/Z' + Z ] Z 5%% :
i l

The z’s are drawn from a Normal distribution of width 1, and a penalty is added to the
2 f Z 2
X0 2k e

~
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The dream:
* Find someone interested in this project who is also technically savvy with the data

* Discuss the procedure to see if we believe it can be made to work. Should include discussions
with the fitting teams.

* Run some simple examples to get a feeling for how much we can learn from ‘doing it right’.
E.g., translate P(Data| prediction) into chi squared for fits.

* If the gain is significant, then carry this out.
* And hopefully someone in H1 would also be interested ...

* worst case — give some prescriptions to fitting teams how better to account for the ‘probability
of the data given the model’ in their analysis.



