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EGMF - Standard Constraints [Neronov and Semikoz, 2009]
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EGMF - Lower Bound on B? [Neronov and Semikoz, 2009]

M
ag

n
et

ic
d

if
fu

si
o

n

H
u

b
b

le
R

ad
iu

s

Zeeman Splitting
Faraday Rotation

CMB

EM cascades

-12 -10 -8 -6 -4 -2 0 2 4
-18

-16

-14

-12

-10

-8

-6

-4

logLB @MpcD

lo
gB
@G
D

I Resistive decay due to magnetic
diffusion removes short correlation
lengths LB

I LB cannot be larger than
the Hubble Radius

I EGMF cannot be stronger
than galactic magnetic fields

I Non-observation of
intergalactic Faraday
Rotation for radio emisson
from Quasars

I Non-observation of large
scale angular anisotropies of
the CMB

I Lower bound on B from
gamma ray observations?

3 A. Saveliev



EGMF - Lower Bound on B?
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Gamma rays emmitted from a blazar develop an electromagnetic
cascade due to interactions with the Extragalactic Background
Light (EBL) via Pair Production and Inverse Compton (IC)
scattering. The interaction of this cascade with the EGMF results
in several observational features.
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EGMF - Lower Bound on B?
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Point-like sources appear extensive [Dolag et al., 2009],
[Neronov et al., 2010]
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EGMF - Lower Bound on B?

10.10.010.001

Appearance of a point-like source at
θobs = 3 for magnetic fields

B = 10−17 G, 10−16 G, 10−15 G and
10−14 G [Neronov et al., 2010]

I Point-like sources appear
extensive
[Dolag et al., 2009],
[Neronov et al., 2010]
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EGMF - Lower Bound on B?
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Time-delayed echos of primary gamma rays [Plaga, 1994],
[Murase et al., 2008]
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EGMF - Lower Bound on B?
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EGMF - Lower Bound on B?
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Suppression of observed photon flux in the GeV region
[d’Avezac et al., 2007], [Neronov and Vovk, 2010],
[Vovk et al., 2012]
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EGMF - Lower Bound on B?

Predicted gamma ray flux of
1ES0229+200 for different magnetic
fields with data points of Fermi LAT
and HESS [Saveliev et al., 2013a]

I Point-like sources appear
extensive
[Dolag et al., 2009],
[Neronov et al., 2010]

I Time-delayed echos of
primary gamma rays
[Plaga, 1994],
[Murase et al., 2008]

I Suppression of observed
photon flux in the GeV
region
[d’Avezac et al., 2007],
[Neronov and Vovk, 2010],
[Vovk et al., 2012]
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EGMF - Origin
The origin of EGMF is still uncertain - mainly two different
concepts:

I Astrophysical scenario: Seed magnetic fields are generated
during structure formation (e.g. by a Biermann Battery
[Biermann, 1950]) and are then amplified by the dynamo
effect [Zeldovich et al., 1980]

I Cosmological scenario: Strong seed magnetic fields are
generated in the Early Universe, e.g. at a phase transition
(QCD, electroweak) [Sigl et al., 1997] or during inflation
[Turner and Widrow, 1988], and some of the initial energy
content is transfered to larger scales.

The latter are the so-called Primordial Magnetic Fields and will be
focused on in the following.

I Basics for the time evolution: Homogeneous and isotropic
magnetohydrodynamics in an expanding Universe.
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Primordial Magnetic fields - Basic MHD

Magnetohydrodynamics (MHD)

I Maxwell Equations:
∇ · E = 4πρch, ∇ · B = 0, ∇× E = −∂tB, ∇× B = 4πj

I Continuity equation for mass density ρ: ∂tρ+∇(ρv) = 0
I Navier-Stokes Equations:
ρ (∂tv + (v · ∇) v) = −∇p + µ∆v + (λ+ µ)∇ (∇ · v) + f

For the magnetic field and the turbulent fluid it follows therefore

∂tB =
1

4πσ∆B +∇× (v× B)

∂tv = − (v · ∇) v +
(∇× B)× B

4πρ + fv .

12 A. Saveliev
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Primordial Magnetic fields - Basic MHD

The aspect of interest is the distribution of energies on different
scales k, i.e. the magnetic spectral energy density M of the
magnetic fields and the kinetic magnetic spectral energy density U

εB =
1

8πV

∫
B2(x) d3x =

∫ |B̂(k)|2

8π d3k ≡ ρ
∫

Mkdk

εK =
ρ

2V

∫
v2(x) d3x =

ρ

2

∫
|v̂(k)|2d3k ≡ ρ

∫
Ukdk

In addition, for magnetic helicity one can define the spectral
helicity density H by

hB =
1
V

∫
A(x) · B(x) d3x = i

∫ ( k
k2 × B̂(k)

)
· B̂(k)∗d3k

≡ ρ
∫
Hkdk

13 A. Saveliev
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Primordial Magnetic fields - Basic MHD
Switch to Fourier (q-)space: B(x)→ B̂(q), v(x)→ v̂(q)

Hence

∂tB =
1

4πσ∆B +∇× (v× B)

∂tv = − (v · ∇) v +
(∇× B)× B

4πρ
becomes

∂tB̂(q) = − 1
4πσq2B̂(q) +

iV 1
2

(2π)
3
2
q×

∫
v̂(q− k)× B̂(k) d3k

∂t v̂(q) = − iV 1
2

(2π)
3
2

∫
[v̂(q− k) · k] v̂(k) d3k

+
iV 1

2

(2π)
3
2

1
4πρ

∫ [
k× B̂(k)

]
× B̂(q− k) d3k.
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Primordial Magnetic Fields - Correlation Function

Aim: Computation of the correlation function for B and v

I Homogeneity: The correlation function cannot depend on the
position in space

I Isotropy: The correlation function only depends on the
magnitude of the spatial separation

In Fourier space this means that the most general Ansatz is
[von Kármán and Howarth, 1938, Junklewitz and Enßlin, 2011]

〈B̂l (k)B̂m(k′)〉 ∼ δ(k− k′)[(δlm −
klkm
k2 )M(k)− i

8πεlmjkjH(k)]

〈v̂l (k)v̂m(k′)〉 ∼ δ(k− k′)[(δlm −
klkm
k2 )U(k)− iρ

2k2 εlmjkjHK(k)]

15 A. Saveliev
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Master Equations for the Time Evolution of M, U and H
〈
∂t Mq
〉

=

∫ ∞

0

(
∆t
{
−

2
3

q2
〈

Mq
〉
〈Uk〉 −

4
3

q2
〈

Mq
〉
〈Mk〉 +

1
3

1
(4π)2 q2k2

〈
Hq
〉
〈Hk〉

+

∫ π

0

[
1
2

q4

k4
1

(
q2 + k2 − qk cos θ

)
sin3

θ 〈Mk〉
〈

Uk1

〉]
dθ
})

dk

〈
∂t Uq
〉

=

∫ ∞

0

(
∆t
{
−

2
3

q2 〈Mk〉
〈

Uq
〉
−

2
3

q2
〈

Uq
〉
〈Uk〉

+

∫ π

0

[
1
4

q3k
k4

1

(
qk sin2

θ + 2k2
1 cos θ

)
sin θ 〈Mk〉

〈
Mk1

〉
+

1
4

q4k
k4

1
(3k − q cos θ) sin3

θ 〈Uk〉
〈

Uk1

〉
+

1
(16π)2

q3k2

k2
1

(
−2q − q sin2

θ + 2k cos θ
)

sin θ 〈Hk〉
〈
Hk1

〉]
dθ
})

dk

〈∂tHq〉 =

∫ ∞

0

{
∆t
[

4
3

k2〈Mq〉〈Hk〉 −
4
3

q2〈Mk〉〈Hq〉

−
2
3

q2〈Uk〉〈Hq〉 +

∫ π

0

(
1
2

q4k2

k4
1

sin3
θ
〈

Uk1

〉
〈Hk〉

)
dθ
]}

dk

Definitions:
k1 ≡ q− k
q · k ≡ qk cos θ

Energy/helicity conservation: ∂tεtot = ρ
∫

(∂tMq + ∂tUq) dq = 0
and ∂thB = ρ

∫
∂tHqdq = 0

16 A. Saveliev



Results on the Time Evolution of Primordial Magnetic
Fields without Helicity

I Starting either with
an initial power-law ...

I ... or a concentration
of the spectral
energies on a single
scale the qualitative
result is similar: a
tendence to
equipartition and
both Mq ∝ q4 ∝ L−4

(i.e. B ∝ q 5
2 ∝ L− 5

2 )
and Uq ∝ q4 at large
scales.

[Saveliev et al., 2012]
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Results on the Time Evolution of Primordial Magnetic
Fields with Helicity

I Including magnetic
helicity for the same
initial conditions
results in an Inverse
Cascade, a fast
transport of big
amounts of magnetic
energy to large scales.
This is due to helicity
conservation.

[Saveliev et al., 2013b]
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I Two regimes are visible: When helicity is small, the
considerations of the non-helical case are valid; once helicity
reaches its maximal value, the behaviour changes dramatically
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Conclusions

I Extragalactic Magnetic Fields (EGMF) are an important
aspect of astrophysics and cosmology although our knowledge
of their nature is rather limited

I One possible scenario for the generation of EGMF is the time
evolution of Primordial magnetic Fields during which energy,
among other things, can be transported from smaller to larger
scales

I The expicit computation of the backreaction of the magnetic
field on the medium gives the result of a power law behavior
with Mq ∝ q4 ∝ L−4 (i.e. B ∝ q 5

2 ∝ L− 5
2 ) and

Uq ∝ q4 ∝ L−4 and equipartition at large scales.
I Helicity enhances this effect by creating an inverse cascade

which results in much higher magnetic fields today compared
to the non-helical case
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Current Projects I - Master Equations Continued

with G. Sigl (U Hamburg) and K. Jedamzik (U Montpellier)

Further analysis of the Master Equations (Super-equipartition,
other applications) and consideration of kinetic helicity:

〈B̂l (k)B̂m(k′)〉 ∼ δ(k− k′)[(δlm −
klkm
k2 )M(k)− i

8πεlmjkjH(k)]

〈v̂l (k)v̂m(k′)〉 ∼ δ(k− k′)[(δlm −
klkm
k2 )U(k)− iρ

2k2 εlmjkjHK(k)]

This will give insights to the evolution and influence of vorticity.
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Current Projects II - Numerical Simulations

with B. Chetverushkin (Keldysh Institute, Moscow) and N.
D’Ascenzo (DESY Hamburg)

The starting point is the Boltzmann Equation:

∂t f (x, v, t) + v · ∇f (x, v, t) = C(f )

I It has been shown recently that it is possible to include
electromagnetic fields and derive the MHD equations directly
in the most generic way

I This approach allows to use efficient explicit numerical
schemes suitable for large parallel computing systems

I Various applications, in particular in astrophysics
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Current Projects III - CP Violation/Helicity Determination

with T. Vachaspati (Arizona State University) and R. Alves Batista
(U Hamburg)

E3

E2

E1

left-handed

E3

E2

right-handed

E1

Patch of radius R

OR

Blazar Observer

DTeV1

Ds

Observation plane

DTeV2

Ê2

Ê1

B ( )x1

B ( )x2

r

òj

x

y

12

[Tashiro et al., 2013]
I The propagation of

electromagnetic cascades
can be used to statistically
analyze the properties of the
magnetic helicity and
therefore CP violation

I This can be done for single
sources as well as for the
gamma ray sky

I Development of 3D
simlations of cascades in
magnetic fields
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Additional EGMF Constraints from Primordial Fields
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I Taking the resulting time
evolution for helical and
non-helical fields...

I ...further constraints are
possible.

I Considering the power-law
slope for the spectral
energies, causality dictates
further limits.
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Constraints on EGMF - Resistive Decay

Diffusion equation for magnetic fields: ∂tB = 1
4πσ∆B

I Estimate for the diffusion time τdiff : B
τdiff
' 1

4πσ
B
L2

I Therefore: L =
( τdiff

4πσ
) 1

2 ∝ τ
1
2
diff , i.e. B on smaller scales decays

faster than on larger scales
I With τdiff ' H−1 and σ ' 1011 s it is

LB & (4πσH)−
1
2 ' 6× 10−12 Mpc
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Constraints on EGMF - Faraday Rotation
The rotation of the polarization plane of radiation rotates by an
angle β depending on the wavelength λ according to

β = λ2RM ∝ λ2
∫ l(zemit)

0
neB‖(z)(1 + z)−2dl(z)

I The difference ∆β of the rotation angles between wavelengths
λ and λ+ ∆λ is given by RM = ∆β/∆λ2

I After transversing N = D/λB coherence lengths with the
Rotation Measure RMλB each, the average total rotation
measure is ∆β is

∆β

∆λ2
B

=
NRMλB

N 1
2

= N
1
2 RMλB

= (
D
λB

)
1
2 RMλB ∝ (

D
λB

)
1
2λBB‖ ∝ λ

1
2
BB‖
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Propagation Paths

[Dermer et al., 2009]

Due to their importance the
following lengths are shown:

I λT: Electrons in the
Thomson limit

I λKN: Electrons in the
Klein-Nishina limit

I λγγ : Photons due to Pair
Production
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Two-Stream-Like Electrostatic Instabilities

One dimension:
I v & vph → particles decelerate,

wave gains energy
I v . vph → particles accelerate,

wave loses energy

I Result: Wave gains more
energy than it loses →
instability grows

27 A. Saveliev



Two-Stream-Like Electrostatic Instabilities

Three dimensions
[Nakar et al., 2011]:

I Similar to 1D case, but
transversal spread and
propagation oblique to wave
mode increases number of
configurations

I Therefore two maximum
growth cases: Parallel (in
analogy to 1D) and oblique

I Resonance condition:
Re(ω) ' ck‖ − ck⊥/Γ
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Magnetic Fields from Inflation

I Adding terms to the Lagrangian to couple the electromagnetic
fields to Curvature (e.g. RAµAµ, RFµνFµν) or to the Inflaton
field (f 2(φ)FµνFµν) [Turner and Widrow, 1988]

I Similar to the quantum fluctuation component of φ,
electromagnetic superhorizon modes are frozen in during
inflation, giving non-negligible magnetic fields

I Predictions and
constraints are
difficult due to
strong dependence
on model of
Inflation and
coupling

29 A. Saveliev



Magnetic Fields from Inflation

Example: L′EM = f 2(φ)FµνFµν , f 2(φ) ∝ a−α

I B = B(k, α,H) (k is the inverse scale of interest and H the
Hubble Parameter at Inflation).

I Anisotropies and the claim of negligible backreaction onto
Inflation by the electromagnetic fields give a constraint of the
form α & α0(H, k)

I Recent measurements of the BICEP2 collaboration
[Ade et al., 2014] give H ' 1.1× 1023 eV and therefore
B . 8.1× 10−35 G [Ferreira et al., 2014]
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Cosmological Phase Transitions
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The phase diagrams of the EWPT (left) and QCDPT (right)
suggest a continuous phase transition, however, due to BSM
approaches, also a first order is possible.
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Magnetic Fields from Cosmological Phase Transitions
I At a first order phase transition

seeds of the high temperature
phase (gray) nucleates at some
specific average length scale and
starts to grow. The resulting latent
heat is released in form of shock
fronts (red, dashed).

I Magnetic fields might emerge due
to phase velocity differences in the
two phases at the bubble walls
[Sigl et al., 1997]
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Magnetic Fields from Cosmological Phase Transitions
I QCDTP: Charge separation due to

the the bubbles “pushing” the
quarks ahead of them produces
surface currents which result in
magnetic fields
[Cheng and Olinto, 1994]

33 A. Saveliev



Magnetic Fields from Cosmological Phase Transitions
I Collisions of the shock fronts

produce turbulence which gives rise
to magnetic fields via a
Biermann-Battery-like mechanism
[Quashnock et al., 1989]
[Baym et al., 1996]
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Cosmological Implications of EGMF
I BBN: Strong magnetic fields increase the neutron decay rate

which results in smaller relic abundances of Helium
[Matese and O’Connell, 1969]; Increase of the expansion rate
and thus change of the n/p-ratio freeze-out temperature
[Matese and O’Connell, 1970]

I Homogeneous magnetic field: The energy-momentum tensor
becomes anisotropic, hence leading to an anisotropic
Expansion of the Universe [Barrow et al., 1997]

I Deposition of dissipated magnetic field energy in the heat
bath of the CMB (Sunyaev-Zel’dovich Effect)
[Jedamzik et al., 1998],[Jedamzik et al., 2000]

I Due to magnetic pressure inhomogeneous magnetic fields slow
down the growth rate of density perturbations which,
backreacting, at the same time slows down the decay of the
magnetic fields [Barrow et al., 2007]

I Production of B-modes in CMB anisotropies, thus mimicking
primordial gravitational waves [Bonvin et al., 2014]
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Time Evolution without Helicity - Predictions

kI

q

q
M

q

I In the beginning the energy is
concentrated on the integral scale
kI

I Due to the interaction with
the IGM some of the energy
is transported to larger
scales (smaller q), such that
Mq ∝ qα−1 with α = 3
[Hogan, 1983] or α = 5
[Durrer and Caprini, 2003]

I Energy cascades down to
small scales (large q) and
then dissipates beyond kdiss ;
slope as α = −5/3
[Kolmogorov, 1941] or −3/2
[Iroshnikov, 1964]
[Kraichnan, 1965]

I Due to this energy transport
kI decreases (selective decay)
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Origin of Primordial Magnetic Helicity
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Measurement of Primordial Magnetic Helicity
It has been shown that [Tashiro and Vachaspati, 2013]

G(E1,E2) =

〈
(Θ1 ×Θ2) · x

|x|

〉
∝ 1

2H(r12)r12

for a known blazar position; otherwise (with E3 > E2 > E1)

G(E1,E2,E3) =

〈
[(Θ1 −Θ3)× (Θ2 −Θ3)] · x3

|x3|

〉
∝ 1

2H(r12)r12
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Time Evolution with Helicity - Predictions

I Magnetic spectral helicity H is connected to M via the
relation |Hk | ≤ 8π

k Mk

I The time evolution is now governed by the claim of helicity
conservation, i.e. kIHI ' 8πMI ' const

I The relaxation time τI on the integral scale LI is given by
τI = LI

veffA,I
∝ LI

(kIMI)
1
2
∝ LI

(kI)
1
2
∝ L

3
2
I ∝ k−

3
2

I ⇒ kI ∝ t− 2
3

⇒ HI ∝ MI
kI ∝ t 2

3
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conservation, i.e. kIHI ' 8πMI ' const
I The relaxation time τI on the integral scale LI is given by
τI = LI

veffA,I
∝ LI
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Dependence of the Time Evolution on Helicity
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Dependence of the Time Evolution on Helicity
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Present-Day EGMF from PMF
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Present-Day Extragalactic Magnetic Fields depending on the initial
Alfvén Velocity vA,0 and the initial magnetic helicity in terms of
f0 = H0/H0,max for magnetogenesis at QCDPT (left) and EWPT
(right).
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Evolution of Primordial Magnetic Fields including Viscosity

Taking into account viscosity in the Early Universe the actual time
evolution of the integral scale LI (left) and MI (right) has the
following form [Banerjee and Jedamzik, 2004]:
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Predictions from different Models of Magnetogenesis at
QCDPT and EWPT

Over the years there has been a large variety of different models
how Primordial Magnetic Fields were generated during QCDPT
(left) and EWPT (right) [Durrer and Neronov, 2013]:
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Gamma Ray Instruments - Fermi LAT

I Located on the Fermi Gamma-Ray Space Telescope (FGST),
formerly Gamma-ray Large Area Space Telescope (GLAST)
launched in 2008

I The Large Area Telescope (LAT) is a highly sensitive
gamma-ray detector for energies of 30 MeV to 300 GeV
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Gamma Ray Instruments - H.E.S.S. Observatory

I H.E.S.S. (High Energy Stereoscopic System) is an Imaging
Atmospheric Cherenkov Telescopes (IACT) located and
Namibia and taking data since 2002; upgrade 2012

I Detection of Very High Energy (100 GeV to TeV) gamma-rays
by Cherenkov light from cascades initiated by them in the
atmosphere
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