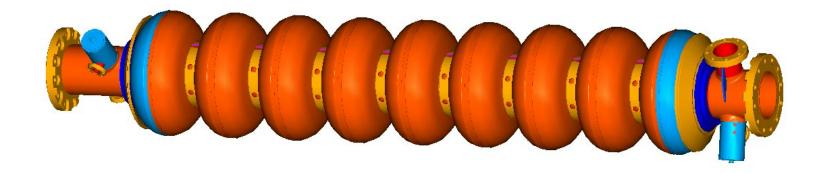
Status of the XFEL test cavity program

Detlef Reschke


for the test cavity program team July 2006

- Motivation
- Object of the program
- Status + Results
- Summary, next steps + some problems

Motivation

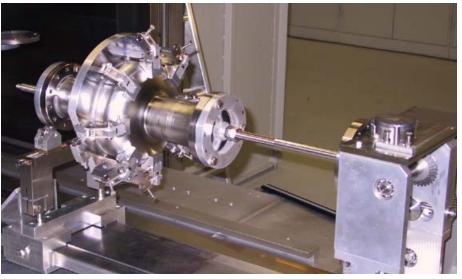
XFEL will be based on today's nine-cell cavities
 (no super-structure, no major modifications of inter-cavity connection,.)

- Specification for cavity fabrication: 2006
- => Qualification of modified fabrication parameters is urgent
- => Qualification of further Nb vendors
- => large-crystal Nb for series nine-cell production?

Object of the program

- Modification of present spec for welding preparation during cavity fabrication:
 - up to now:

max 8h between final etching of weld area and EB welding ("8h – Regel") => restriction of cavity fabrication workflow


- new:

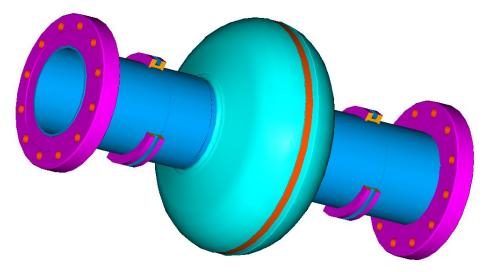
test of storage of prepared (etched + dried) components for 1 week under vacuum and nitrogen atmosphere

Electron beam welding at DESY

XFEL
X-Ray Free-Electron Laser

Object of the program (ctd.)

- Large grain niobium:
 - application of "large grain" (cm-size) niobium disks cut from ingot (instead of forged and rolled sheets with grain size of ~ 100µm) => ingots from Hereaus, Ningxia, CBMM
 - test of mono-crystal niobium (two cavities)
- Qualification of further niobium vendors:
 - Heraeus stopped fabrication of Nb sheets; only ingots available
 - => sheets by Plansee Co. need to be qualified urgently
 - check of chinese Ningxia niobium
 - check of Cabot niobium, but RRR spec not met
 - check of russian Giredmet niobium with high RRR + low tantalum
 - => availability of large quantities??

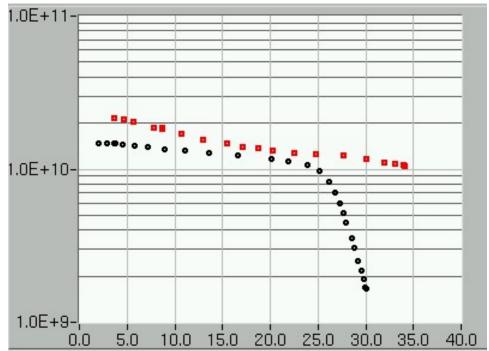

Object of the program (ctd.)

- Comparison of EP processes at Henkel + DESY
 - different and complex behavior of electrolytic bath (1 part HF: 9 parts H₂SO₄)
 - => study of parameters, electrolyte, set-up
- Development of dry-ice cleaning as additional cleaning process (CARE,..)
- Check + optimisation of "120C-bake" parameters
- Further activities:
 - second s.c. photo cathode gun cavity with 0.6-cells (Jacek Sekutowicz)
 - optional: extension to 1.6-cell s.c. gun cavity
 - prototype of three-cell cavity

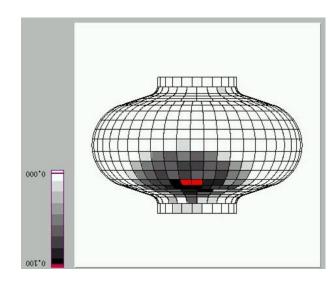
Status and Results

DESY standard single-cell cavity:

- 16 cavities at DESY completed:
 - machining, etching, EB welding + mechanical/optical checks inhouse
 - deep drawing of cups and electropolishing (EP) of cavities in industry
- 6 cavities at Accel Co. completed (large grain + mono crystal):
 - final mechanical/optical checks at DESY; EP at Henkel Co.; BCP at Accel


Status + Results: Qualification of DESY production

- First step: Qualification of DESY in-house production:
 - 3 single-cells of well-known Nb quality (Heraeus 1999)
 - deepdrawing of cups at Zanon Co.
 - All electropolishing at Henkel Co.
 - Assembly, HPR and tests at hall NO
- all cavities exceed 30 MV/m at high Q-value
- Example for cavity data presentation

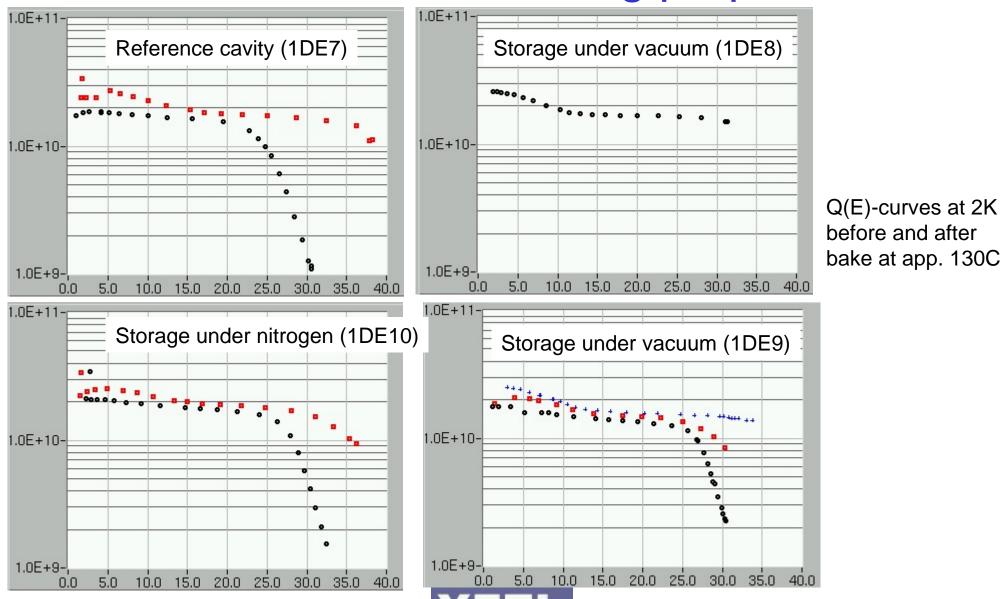


1DE1: First DESY-Cavity successful

- First Cavity of DESY inhouse fabrication
- 150μm EP@Henkel, 800C, 130μm EP@Henkel, HPR, 127C bake, HPR
 (i) 130μm EP due to grinding; ii) add. HPR after bake necessary due to field emission)
 E_{acc} = 34 MV/m @ Q₀ = 1 ·10¹⁰; no FE; limited by BD; few MP

Q(E)-curves before and after bake at T = 2K

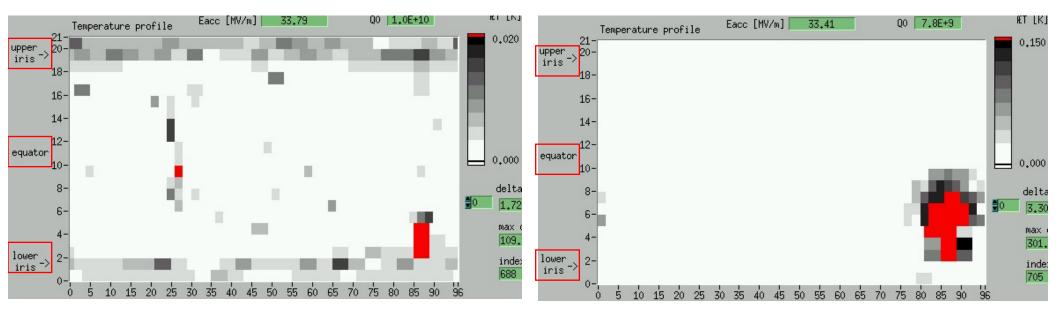
Quench location far off the equator



Status and Results: Welding preparation

- Modification of present spec for welding preparation during cavity fabrication:
 - 1x reference cavity: max 8h between final etching of weld area and EB welding; (tested)
 - 2x cavities with 168h storage under vacuum of components after final etch of weld area; (2x tested)
 - 2x cavities with 168h storage under nitrogen atmosphere of components after final etch of weld area; (1x tested; 1xready for test)
- Good cavity performance with gradients between 31MV/m and 38 MV/m!!
- Modified welding preparation is accepted !!

Status and Results: Welding preparation II



Detlef Reschke

28.07.2006

Quench location (1DE7, 1DE9)

- Reference cavity 1DE7: T-Maps after bake (test 2):
 - a) T-Mapping shows remaining field emission and pre-cursor of quench
 - b) T-Map during quench at 33,5 MV/m; quench located well-off the equator

T-maps just before (left) and during (right) quench

Remark: Max. gradient of 38 MV/m in test 5 without T-Map.

Status and Results: Large grain material

- Five single-cell cavities + three nine-cell cavities fabricated at Accel Co. of "large grain"-Nb by Heraeus with RRR = 500 (two Nb batches/ingots)
- First tests after electropolishing due to
 - i) availability of BCP vs. EP facilities
 - ii) comparison to P.Kneisel's large grain results after BCP
 - CBMM, Wah Chang + Ningxia niobium at 2,2GHz / 1.5GHz / 1.3GHz
 - 8 10 cavities of different cavity shapes => $E_{\rm acc}$ = (25 -34) MV/m
- add. tests after BCP ongoing
- significant mechanical problems during deep-drawing (shape + tolerances !!!)

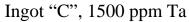
Courtesy by Peter Kneisel

Large Grain/Single Crystal Niobium[2]

CBMM

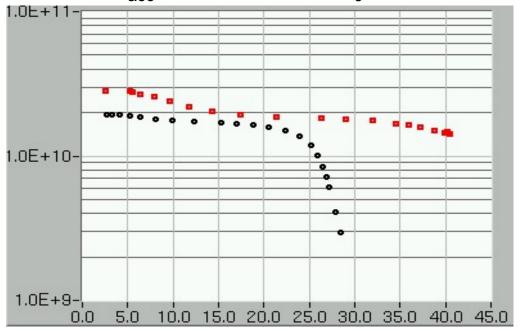
Ingot "D",800 ppm Ta

Ingot "A", 800 ppm Ta


Ingot "BD & ODE fp pes Take

Ninxia

Wah Chang

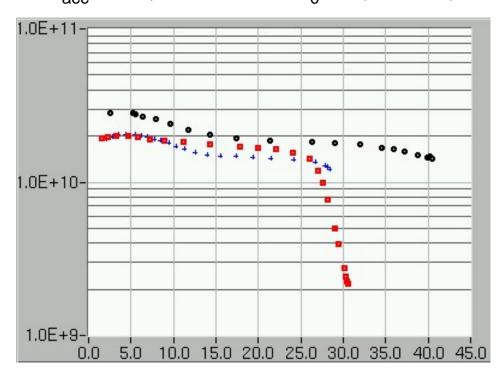


28.07.2006

Summary of large grain cavity 1AC3

- large grain Heraeus Nb RRR 500 cut from ingot; fabrication at Accel Co.
- Test 1: 150µm EP@Henkel, 800C, 40µm EP, HPR: $E_{acc} = 28,4 \; MV/m \; @ \; Q_0 = 3 \cdot 10^9; \; FE \; (>25 / n.a.MV/m) \; ; \; limited \; by \; pwr$
- Test 3: baking at 120C,48h + add. HPR (test 2 limited by field emission):

$$E_{acc} = 41 \text{ MV/m} @ Q_0 = 1.4 \cdot 10^{10}$$
; no FE; limited by bd



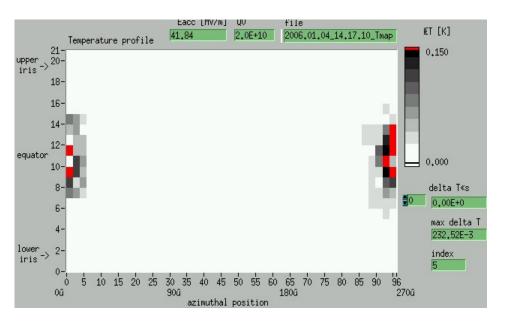
Q(E)- curves at 2K before and after bake

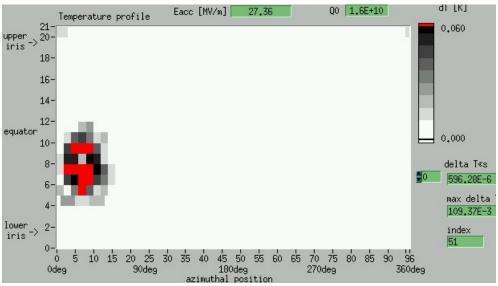
1AC3 test 4 + 5 after BCP

- Test 4: 42 µm BCP, grinding of beam tube, 10µm BCP, HPR: $E_{\rm acc} = 30.5$ MV/m @ $Q_0 = 2.2 \cdot 10^9$; no FE; limited by power
- Test 5: add. bake 133C $E_{acc} = 28,5 \text{ MV/m} @ Q_0 = 1,2 \cdot 10^{10}$; no FE; limited by Quench

Q(E)-curves at 2K:

- after BCP before bake
- after BCP + after bake
- final curve after EP

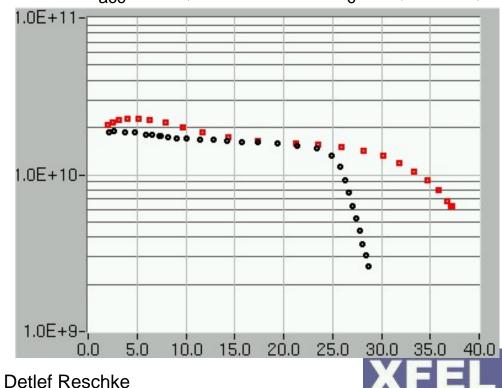

Remark:


Decrease of 2MV/m after bake is compatible with test error !!

1AC3 test 5 after BCP + bake: T-Maps

Comparison of T-Maps during quench of test 3 and test 5:

Test 3: $E_{acc} = 41 \text{ MV/m} @ Q_0 = 2.10^{10}$; no FE

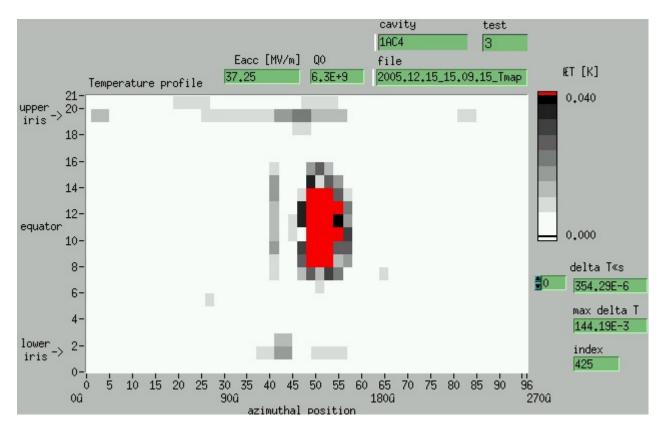

Test 5: $E_{acc} = 28.5 \text{ MV/m} @ Q_0 = 1.2 \cdot 10^{10}$; no FE

Changed quench location after BCP !!!

Summary of large grain cavity 1AC4

- large grain Heraeus Nb RRR 500 cut from ingot; fabrication at Accel Co.; EP at Henkel Co.
- Test 2: 150 μ m EP, 800C, 40 μ m EP, HPR (test 1 stopped due to cryostat problem) $E_{acc} = 29 \text{ MV/m} @ Q_0 = 3 \cdot 10^9$; no FE, no MP, limited by pwr
- Test 3: baking at 128C, 48h:

 $E_{acc} = 37.2 \text{ MV/m} @ Q_0 = 6.3 \cdot 10^9; FE (>28 / 36MV/m); limited by quench$



Q(E) - curves at 2K before and after bake

28.07.2006

1AC4: T-Maps of test 3

- T-Map no. 13 of test 3 at 37 MV/m during Quench:

- i) quench location around the equator dominating
- ii) trace and hot spots of field emission clearly visible

1AC5: Summary of first test

- large grain Heraeus Nb cut from ingot; fabrication at Accel Co.: spun cups; EP at Henkel Co.

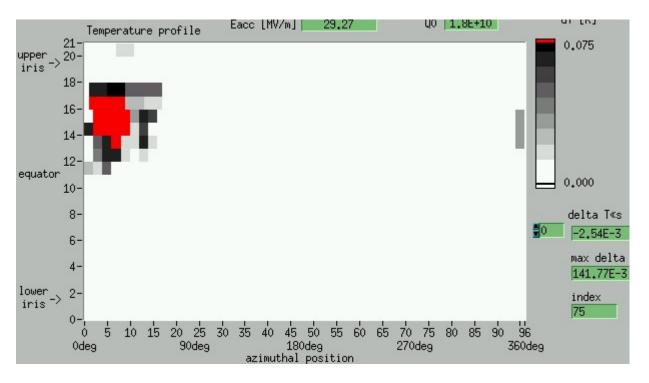
- Test 1: 150μm EP, 800C, 40μm EP, HPR, 135C bake, HPR (T-Maps):

 $E_{acc} = 29.3 \text{ MV/m} @ Q_0 = 1.3 \cdot 10^{10}$; few FE (>28 / -), no MP, lim. by Quench

no Q-disease

=> significant worse Q(E)performance compared to 1AC3 + 1AC4

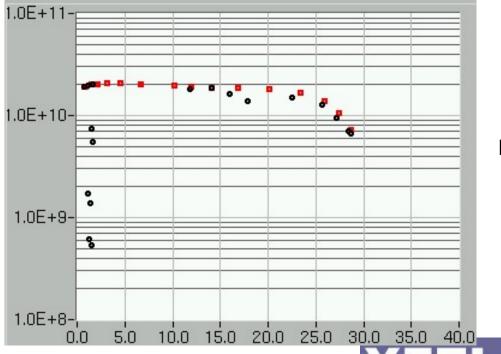
=> fabrication problems of
 spun cups ??



Q(E) - curve at 2K after bake

1AC5 test 1: T-Maps

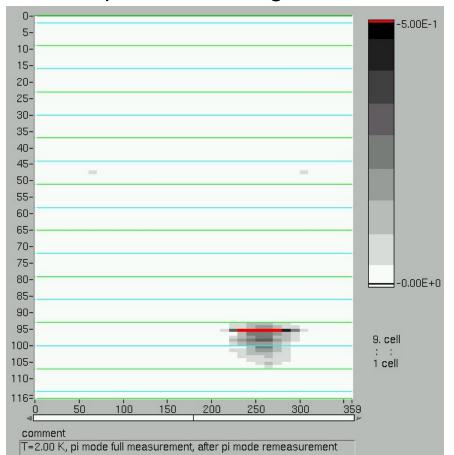
- Test 1: $E_{acc} = 29.3 \text{ MV/m} @ Q_0 = 1.3 \cdot 10^{10}$; few FE (>28 / -), lim. by Quench

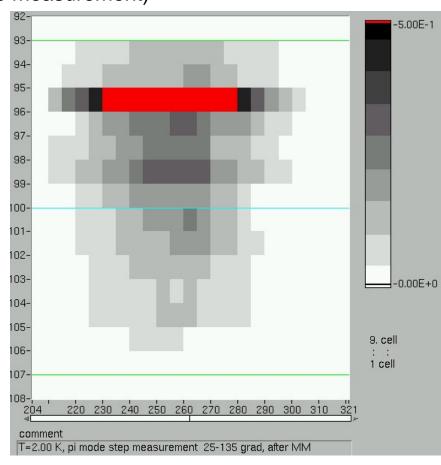

T-Map at 2K after Q-disease check

=> Quench far off the equator !!

Nine-cell AC114: Summary of first tests

- large grain Heraeus Nb cut from ingot (different ingot than 1AC3-5); RRR ca. 500; fabrication at Accel Co.; deep drawn cups, BCP at DESY
- Test 1: 100 μ m BCP, 800C, 20 μ m BCP, much HPR (T-Maps): $E_{acc} = 28.7$ MV/m @ $Q_0 = 7.3 \cdot 10^9$; strong FE (>18 / 23), LPP at 2MV/m observed; no Q-disease; lim. by Quench => FE induced???




First and final Q(E) - curve at 2K

Detlef Reschke

Nine-cell AC114 test 1: T-Maps

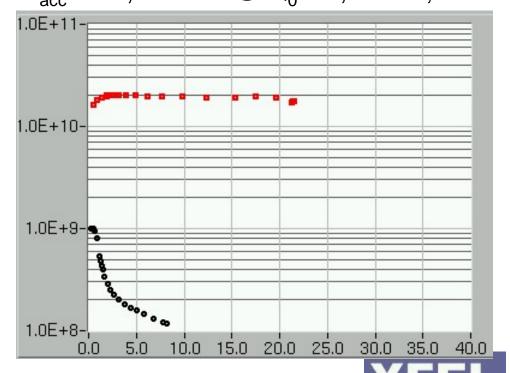
- T-Maps at 2K during Quench (after mode measurement)

=> Quench in cell 2, upper cup, between iris and equator

=> FE- induced quench??

Detlef Reschke

AC114: Mode measurement of test 1


			Best CW-Test						
Cavity	Prod No	Cells	BCP/EP Cavity	CW-Test Date	Max. Eacc	Qo at Max. Eacc	Limit	FE Onset	Eacc at Q=1e+10
AC114	5	ALL	BCP	07-Jul-06	28.74	6.5E+09	bd	17.50	27.22
		1&9			32.36		bd		
		2&8			31.68		bd		
		3&7			36.03		bd		
		4&6			32.89		bd		
		5			32.98		bd		

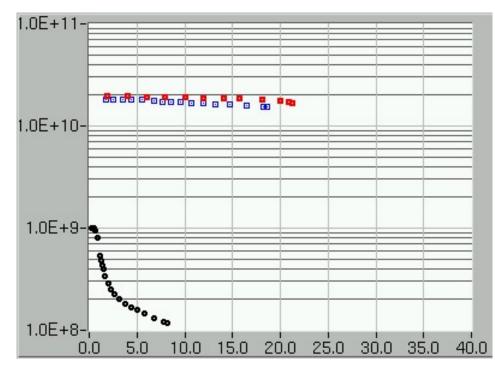
- All cells are quench limited
- All cells have higher max. E_{acc} than pi-mode
- => inconsistency caused by influence of FE

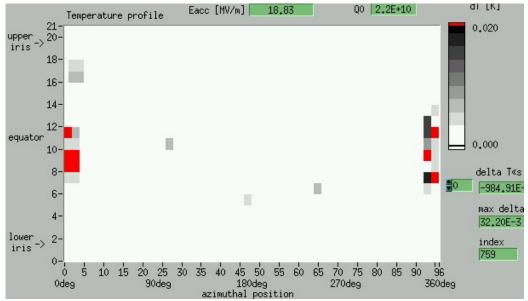
First mono-crystal cavity (1AC6)

- Single crystal CBMM Nb with RRR 200; fabrication at Accel Co.
- Test 1: 140 μ m BCP, HPR: $E_{acc} = 8$ MV/m @ $Q_0 = 1.2 \cdot 10^9$; strong Q-disease due to EDM cutting
- Test 2: add. 750C heat treatment, 30 μ m BCP, HPR: $E_{acc} = 21.5 \text{ MV/m} @ Q_0 = 1.8 \cdot 10^{10}$; limited by quench, no FE

=> next test after more BCP

Q(E) - curves at 2K before and after 750C + 30µm BCP


Detlef Reschke


Single-crystal 1AC6: test 3 after add. BCP

- Test 3: 66µm BCP, grinding (?), 26µm BCP, HPR:

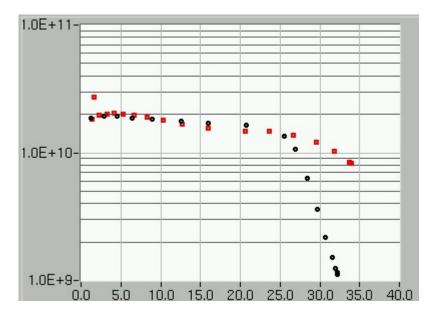
 $E_{acc} = 18,6 \text{ MV/m} @ Q_0 = 1,6 \cdot 10^{10}$; limited by quench, no FE

=> next test after EP

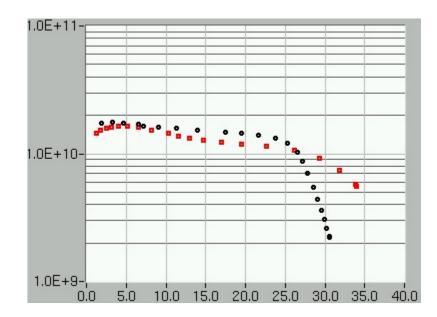
Q(E) - curves at 2K before and after 750C + 30µm BCP, after add. 92µm BCP

Detlef Reschke

Quench in the equator region


Large grain material: Summary

- Electropolished Heraeus "large grain"- niobium gives comparable performance to the best "fine grain"- Nb cavities
- First cavity with spun cups shows significant lower gradient (1 of 1)
- Q-disease checked on two cavity only
- Ongoing tests after etching (BCP)
 - => 1AC3 lost 12 MV/m after 50µm BCP
 - 2x cavities in two steps; 1x cavity one step
 - new cavity only BCP
- Two more nine-cell cavities ready (Accel Co.)
- Mono-crystal cavity:
 - next test after add. EP
 - poor result compared to P.Kneisel (>38 MV/m in two cavities at 2.3 GHz)
 - second cavity 1AC8 will be send to JLab



Status and Results: Giredmet Nb

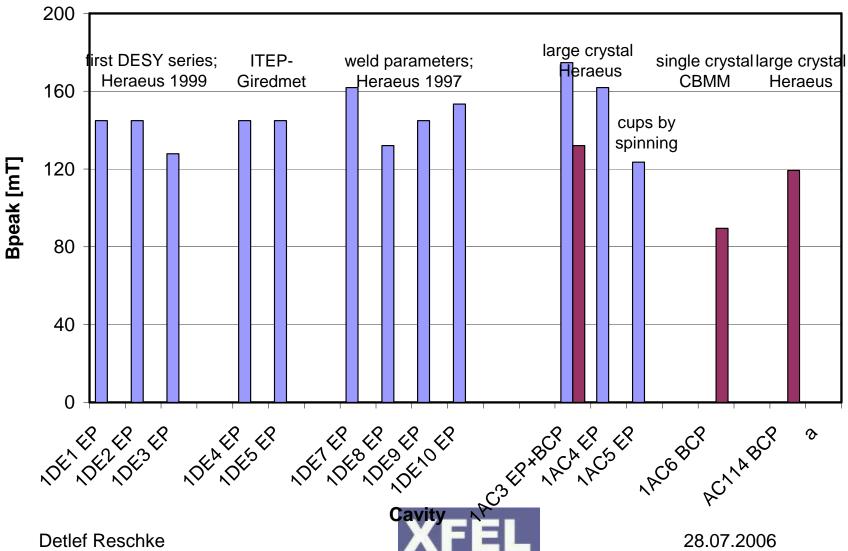
- Three cavities fabricated in-house of russian Giredmet Nb with RRR > 600 (2x completed)
- Preparation: 150µm EP, 800C firing, 40µm EP, HPR, (add. HPR or add. 130C/136C bake)
- Qualification successful !!

Q(E)-curves of 1DE4 before and after bake (some FE present before and after bake)

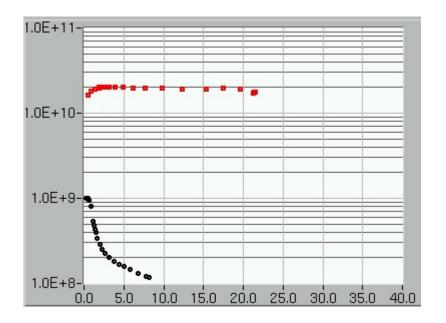
Q(E)-curves of 1DE5 before and after bake (some FE present before and after bake

Status: Cabot Nb

- Two cavities fabricated in-house of Cabot Nb with RRR ~ 230 !!
- Preparation: >100µm BCP@Accel, 800C firing, >100µm EP@Henkel,
 (HPR, 130C bake)
- Tests under preparation


Status: Plansee Nb

- Three cavities fabricated in-house of Heraeus/Plansee Nb with RRR ~ 300
- Preparation: >80µm BCP@Accel, 800C firing,
- Further treatment and tests on the way


Maximum fields

Comparison of B_{peak} of DESY fabrication and large grain cavities:

Q-disease

- Q-disease after Henkel EP:
- No Q-disease found after EP at Henkel Co. up to now (not all cavities checked!)
- URGENT: more Q-disease checks of "large grain"-niobium cavities!!!
- Example for Q-disease: mono-crystal cavity after heavy grinding + BCP

1AC6: Q(E)-curves at 2K before and after 750C + 30µm BCP

Q-disease II

- Q-disease checks of cavities after EP at Henkel Co:
 - 1AC2; no Q-disease at 100K (Jun 03)
 - 1AC2: no Q-disease after 40h at 115 -125K (between tests, april 05)
 - 1AC2: no Q-disease after ??? (Sep 05)
 - 1AC5: no Q-disease after 12h at 120K (Mar 06)
 - 1DE2: no Q-disease after ???
 - 1DE3: no Q-diaease after 110K over night (Jan 06)
 - 1DE4: no Q-disease after 18h at 100-120K
 - 1DE9: no Q-disease after 15h at 80 -100 K (Jan 06, between tests)
 - 1DE10: no Q-disease after 75 90K over night (Jan 06, before test)

maybe some more

Summary, next steps and some problems

- Qualification of DESY in-house cavity fabrication successful
 reproducible gradients above 30MV/m
- Modified welding preparation gives good results
 - => complete cavity tests for changed welding preparation ("8h-Regel")
 - => application to next single-cells for more statistics
- "Large-grain" show excellent results after EP
 - => more tests after BCP of existing "large grain" cavities => lower gradient?
 - => ongoing comparison between BCP and EP on "large grain" Nb material
- New EP preparation of mono-crystal cavity 1AC6
 1AC8 will be send to JLab for preparation and testing
- Complex behavior of electolytic bath of the EP process
 - => study about electrolyte management starts now (Henkel Co., DESY)
 - => 2 single-cells treated with different electrolytes (waiting for final measurement)

Summary, next steps and some problems

- Plansee niobium cavities ready and under preparation
- Ningxia niobium cavities under fabrication
- Fabrication, preparation and test of "large grain" niobium cavities at DESY (autumn 06)
- First "large grain" 9-cell cavity tested; two more ready
- Upcoming presentation:
 - Test and improvement of parameters of dry-ice cleaning
 - Analysis of "120C bake" procedure
- Workflow at DESY needs further optimisation
- Etching and electropolishing facilities at DESY are overloaded with ninecells

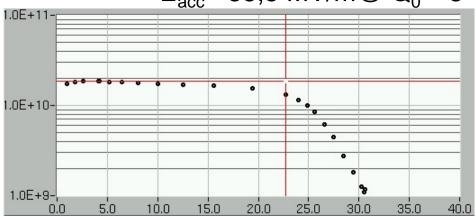
Thanks!

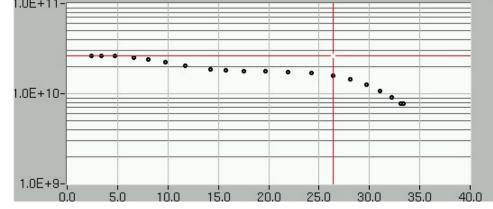
- Thanks to all colleagues for their support:
 - MVP, MVA, MKS, MHF-sl, ZM, V4, AV, Henkel Co. + all others
- Thanks to J. Iversen + W.Singer

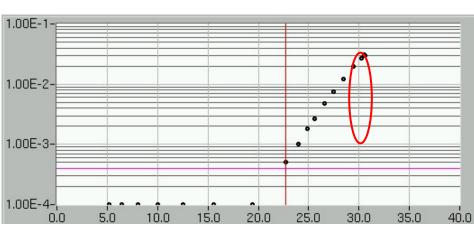
Addendum:

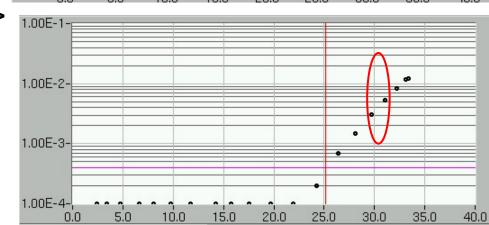
Additional transparencies for explanation!

Dry-ice-cleaning


- 1DE4 after 1x HPR + 2x dry-ice cleaning more FE (test 3)
- -1DE7 after 2x dry-ice cleaning FE improved (less radiation); low Rres (test
 2)
 - add. dry-ice cleaning + leak during cooldown: more FE
- 1AC4 after ?x dry-ice cleaning up to 16MV/m no FE; test stopped due to leak




1DE7: improvement after dry-ice cleaning

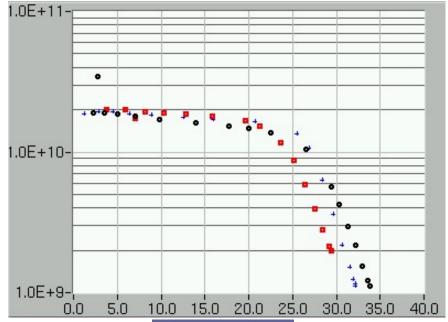

Test 2: add. 136°C, 48h bake, 2x dry-ice cleaning:

 $E_{acc} = 33.5 \text{ MV/m} @ Q_0 = 8.10^9$; lim. by quench; few FE (>25 / 33MV/m)

Test 1: Q(E) + x-ray curve at 2K

Test 2: Q(E) + x-ray curve at 2K

Detlef Reschke

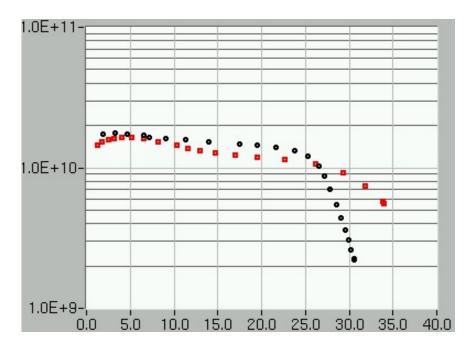


1DE4: Summary of first tests II

- Test 2: add. 5x HPR; check for Q-disease (18h at 100 120K): $E_{acc} = 34 \text{ MV/m} @ Q_0 = 1,1 \cdot 10^9$; limited by BD; strong FE (>24/29MV/m)
- Test 3: add. 2x dry-ice cleaning $E_{acc} = 29.5 \text{ MV/m} @ Q_0 = 2.10^9$; lim. by power + FE (>22 / 26MV/m); leak
- Test 4: add. 3x HPR:

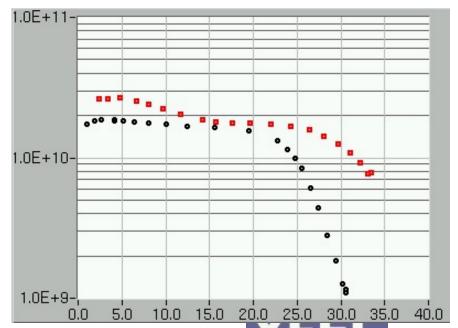
 $E_{acc} = 32 \text{ MV/m} @ Q_0 = 1.1 \cdot 10^9$; lim. by power; some FE (>25/31MV/m)

(no T-Maps taken)


Q(E) - curves at 2K

1DE5: Summary of first tests II

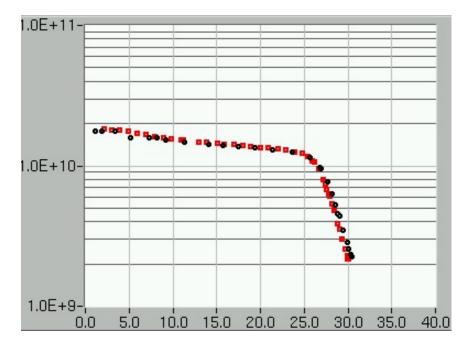
- Test 2: add. bake at 136°C, 48h:


 $E_{acc} = 34$ MV/m @ $Q_0 = 5.5 \cdot 10^9$; limited by BD; some FE (>28 / 34 MV/m) (no T-Maps taken)

Q(E) before and after bake; 2K

1DE7: Summary of first tests

- Nb with RRR 300 (Heraeus); deepdrawing at Zanon Co.; machining + EB welds at DESY
- Reference cavity for improvement of welding parameters
- Test 1: 84 μ m BCP@DESY, 800C, 100 μ m EP@Henkel, HPR: E_{acc}= 31 MV/m@ Q₀ = 1,4 ·10⁹; lim. by power; some FE (>22 / 28MV/m)
- Test 2: add. 136°C, 48h bake, 2x dry-ice cleaning E_{acc} = 33,5 MV/m@ Q_0 = 8 ·10°; lim. by quench; few FE (>25 / 33MV/m)



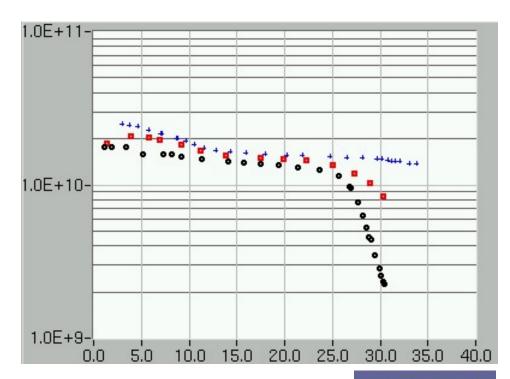
Q(E) - curves at 2K before and after bake

Detlef Reschke

1DE9: Summary of first test

- Nb with RRR 300 (Heraeus); deepdrawing at Zanon Co.; machining + EB welds at DESY
- check of welding parameters: storage for 168h under vacuum
- Test 1: 119 μm BCP@DESY, 800C, 100 μm EP@Henkel, HPR:
 - $E_{acc} = 30.4 \text{ MV/m} @ Q_0 = 2.2 \cdot 10^9$; lim. by power; no FE
 - no Q-disease after 15h at 80 100K

Q(E) - curve at 2K before and after Q-disease check


1DE9: Summary of first tests II

- Test 2: add. bake 138C, 48h:

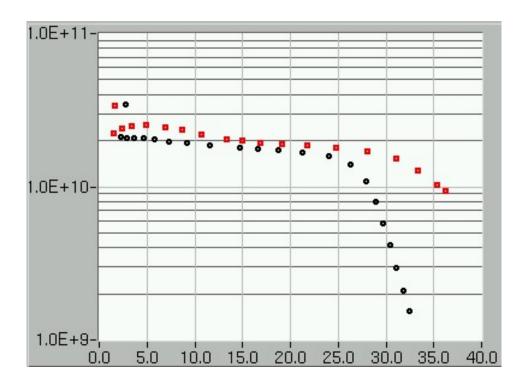
$$E_{acc} = 30.4 \text{ MV/m} @ Q_0 = 8.4 \cdot 10^9$$
; lim. by BD => FE induced? (>26/- MV/m) (T-maps)

Test 3: add. 3x HPR:

$$E_{acc} = 33.8 \text{ MV/m@ } Q_0 = 1.4 \cdot 10^{10}; \text{ lim. by BD; no } FE_{? \text{ (T-Maps)}}$$

Q(E) - curve at 2K before bake, after bake and after add. HPR

XFEL
X-Ray Free-Electron Laser


1DE10: Summary of first tests

- Nb with RRR 300 (Heraeus); deepdrawing at Zanon Co.; machining + EB welds at DESY
- check of welding parameters: storage for 168h under nitrogen
- Test 1: 176 μ m BCP@DESY, 800C, 100 μ m EP@Henkel, HPR: E_{acc} = 32,5 MV/m@ Q_0 = 1,5 ·10 9 ; lim. by quench; some FE (>31? / 31MV/m) (no T-Maps)
- no Q-disease after parking at 90K 150K over night

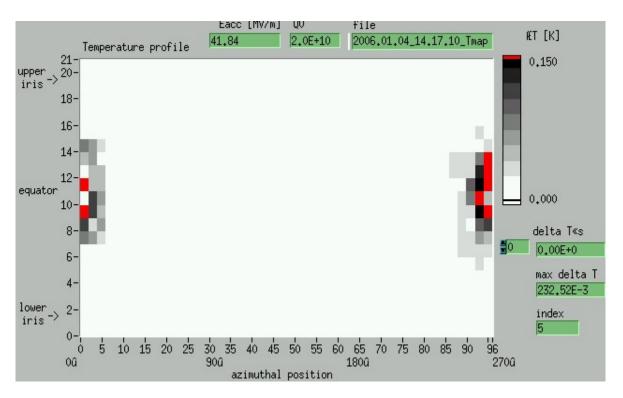
1DE10: Summary of first tests II

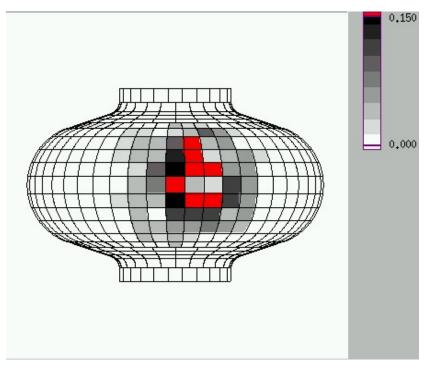
- Test 2: add. bake ca.130C, 48h: $E_{acc} = 36,1 \text{ MV/m@ } Q_0 = 9,4 \cdot 10^9; \text{ lim. by BD; few FE } {}_{(>29/35 \text{ MV/m})}$
- no Q-disease after parking at 75K 90K over night

Q(E) - curve at 2K before and after bake

Courtesy by Peter Kneisel

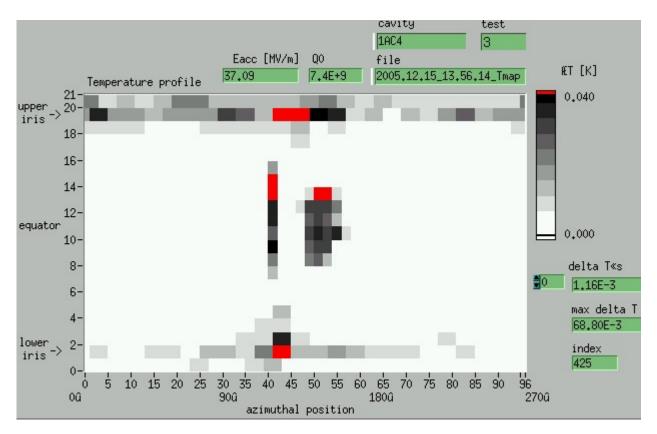
Update since Snowmass(2)


Large grain Ingot "D" from CBMM



1AC3: T-Maps of Test 3

- Test 3: T-Maps at 1.8K during quench $E_{acc} = 41 \text{ MV/m} @ Q_0 = 2,0 \cdot 10^{10}$



T-Map at 1.8K

1AC4: History of first tests II

T-Map no. 10 of test 3 at 37 MV/m:

- i) quench location around the equator dominating; hot spot off the equator
- ii) trace and hot spots of field emission clearly visible

Quench locations

- Table of quench locations of DESY fabrication and large-grain cavities:

Cavity	Gradient	Quench location	Preparation + remark
1DE1	34	lower cup, close to iris	EP; no FE
1DE2	31	equator area	EP; no FE
1DE3	28	above equator; not clear	EP; no FE
1DE7	33	lower cup; mid equator – iris	EP; probably FE-induced
1DE8	31	equator area; little above	EP; no FE
1DE9	34	lower cup; between equator – iris	EP; no FE(?)
1DE10	35	equator area, little above	EP; nearly no FE
1AC3	41	equator area, little above	EP; no FE
1AC3	29	lower cup, between equator – iris	BCP; no FE
1AC4	37	equator area	EP; some FE; 30 degree off
1AC5	29	upper cup; mid equator – iris	EP;
1AC6	19	equator area, little below	BCP, no FE
AC114	28 Reschke	cell2, upper cup, mid equator –iris	BCP, strong FE => FE induced ?

Detlef Reschke

X-Ray Free-Electron Laser