

Two tracks separation resolution in 3D-IBL pixel modules *

Marco Battaglia Cinzia Da Vià Nicholas Dann **Paki Muñoz**

* This work is the qualification task assigned to me to become an ATLAS author

Introduction

- Motivation
- Simulation studies
- ITk-Test beam
- * FEI4 telescope Test beam. Uni-Geneva
- Analysis ongoing

Motivation

ATLAS track reconstruction efficiency (Run 1) High drop on efficiency in case of 'split' tracks

Two-track separation in long flying B Decays requires detailed characterisation of IBL clusters for closely spaced tracks (< 2.5 mm)

3

Beam test with interaction target

- Beam test with interaction target to study IBL and 3D pixel response to closely-spaced charged particles to:
 - * Test two-track separation capability of IBL sensors
 - * Optimise cluster reconstruction and validate response in simulation
 - Study unfolding of merged clusters
 - * Test and validate algorithms to be applied to Run 2 data

Simulation (By Marco Battaglia)

- * G4 simulation of layout to determine track density on IBL plane
 - Standalone G4:
 - Telescope +DUT+Target
 - * Beam size, divergence and energy spread
 - * Simple track fit and extrapolation on DUT plane (perfect patrec)
 - Validated in SOIPIX beam tests with 150,200 and 300 GeV pion beam
 - Layout optimisation:
 - Target Thickness (3 mm)
 - Distance between target and downstream telescope layer (~3 cm)
 - * Angle of incidence on DUT (80° , acceptance ~50 %)
 - Beam Energy and event rate (~1/1000)

ITk Test Beam October 2014

- ITk test beam at SPS facilities
- Resolution ~ 4 um
- 120 GeV pions
- * $\eta = 0$ and 1.3 ($\theta = 90^{\circ}$ and 60°)
- * 3 mm Cu-Target in between layer 2 and 3
- Non-irradiated 3D IBL module plus a planar reference sensors

THANKS TO THE ITk CREW!

The University of Manchester

Correlations

ClusterX/ClusterXCorrelationHisto_d20_d22

Residuals and Cluster width

Hit Map

Two tracks separation resolution

Test Beam FEI4 telescope - Uni Geneva November 2014

12

MANY THANKS UNI GENEVA, BANE AND MATHIEU!

- * FEI4-telescope Uni Geneva 26-27 Nov.
- Resolution ~ 10 um
- * 180 GeV pions beam
- * η ~ 0.2, 1, 1.7, 2.4
 - $\theta = 10^{\circ}, 50^{\circ}, 70^{\circ}, 80^{\circ}$ (20 mill events each)
- * 3 mm Cu-Target in between layer 3 and 4

T

хух

Non irradiated 3D IBL module and planar sensor

DUT+PS

х -у х

Higher statistic

FUTURE PLAN

- Development (modifying) of a specific analysis tool for both telescopes including the Cu-target.
 - Using straight tracks for alignment (~ 96 98%)
 - Look for High Multiplicity events
 - Tracks before the target projected to the target plane
 - Downstream layers tracks reconstruction
 - Look for the DUT efficiency (distinguishing close tracks)
- We hope to have two tracks separation resolution values for the next Telescope Workshop

THANK YOU !

