Simulation of Particle Fluxes at the DESY-II Test Beam Facility

Master's thesis

Anne Schütz

Supervisors: Eckhard Elsen Marcel Stanitzki

Hamburg, 20 January 2015

Motivation: Simulation

More detailed knowledge about the test beam lines is necessary:

- The beam generation
- The beam attributes:
 - Beam energy and its spread Converter
 - Beam purity
 - Particle fluxes

- Simulation of all components of the test beam lines
 - Geometry description in GDML format
 - SLIC with Geant4 toolkit \rightarrow simulated data in LCIO format
- Key input for future beam line improvements

Test Beam Facility: DESY-II tunnel and TB areas

DESY-II: e+/e- synchrotron Preaccelerator for PETRA

Test Beam generation

DESY-II ring - converter plates - TB magnet

Converter plates - TB magnet

TB area: Final collimation and beam monitoring

Simulation: DESY-II beam bunch

> DESY-II bunch:

- 1*10¹⁰ electrons with 6.3 GeV
- σ_E/E = 9.8*10⁻⁴
- beam sizes:
 - $\sigma_x = 1.53 \text{ mm}$
 - $\sigma_y = 0.753 \text{ mm}$

[Heiko Ehrlichmann,

DESY-II machine coordinator]

Slic macro:

/run/initialize

/generator/select gps
/gps/particle e/gps/pos/type Beam
/gps/pos/sigma_x 1.53 mm
/gps/pos/sigma_y 0.753 mm
/gps/pos/centre 0 0 0 cm
/gps/direction 0. 0. 1.
/gps/ene/type Gauss
/gps/ene/mono 6.3 GeV
/gps/ene/sigma 6.17249 MeV

/random/seed /run/beamOn **1000000000**

Sarlsruher Institut für Technologie

Simulation: DESY-II beam bunch

 \rightarrow Simulation of the beam bunch is input for the simulations of further test beam line components

Simulation: Primary target

2.1*10⁵ bremsstrahlung photons

Typical bremsstrahlung spectrum dependency on 1/E

Simulation: Lead/concrete shielding

Lead and concrete shielding

- Lead shielding for stopping e+/e-, primary photons (deviating from the beam path) and synchroton radiation from entering the magnet
- Concrete shielding for stopping proton and neutron fluxes
- Where to put new scintillators (old ones were slowly fried)
- Where to put our neutron counters (ThermoLuminescent Dosimeters)

Simulation: Lead/concrete shielding

> gdml geometry description:

```
<qdml>
 <define>
    Constants, positions,...
 </define>
 <materials>
     <material name="heavyConcrete">
 </material>
 <solids>
       <!-- Lead Shielding -->
     <box lunit="mm" name="ShieldingBox" x="800." y="275." z="200."/>
     <box lunit="mm" name="ShieldingHole" x="50." y="75." z="200."/>
     <subtraction name="LeadShieldingWall">
       <first ref="ShieldingBox"/>
       <second ref="ShieldingHole"/>
       <positionref ref="Position of ShieldingHole"/>
     </subtraction>
```

</solids>

Simulation: Lead/concrete shielding

```
. . .
  <structure>
     <volume name="LeadShielding vol">
       <materialref ref="Lead"/>
       <solidref ref="LeadShieldingWall"/>
     </volume>
     <volume name="testbeam volume">
       <materialref ref="Air"/>
       <solidref ref="WorldBox"/>
       <physvol>
               <volumeref ref="LeadShielding vol"/>
               <position name="LeadShielding vol_position"</pre>
                                               x="-100." y="75." z="100."/>
       </physvol>
     </volume>
  </structure>
  <setup name="Default" version="1.0">
       <world ref="testbeam volume"/>
  </setup>
</gdml>
```


Simulation: Secondary target

- Pair production to electron/positron pairs
- Converter plates of different materials and thicknesses
- Different rates of final test beam

Convert

DESY II

Map of particle trajectories

- Two dimensional histogram of particle trajectories in the DESY-II tunnel
- For specific particle type(s)

Map of simulated <u>electron</u> trajectories along the TB line

DESY I

Simulation: TB dipole magnet

- Magnetic field over an length of 104cm
- > Adjustable current to vary the magnetic field strength

TB magnets: deflection of negatively charged particles

B=0.5T

TB magnets: deflection of negatively charged particles

Karlsruher Institut für Technologie

Final steps

- Beam pipe kink collimation final collimation in the TB area
- > Better understanding of beam composition
 - Behind magnet and beam pipe kink no photons, neutrons and low energy pions and protons left → pure e⁺/e⁻ beam
- Plot of test beam energy and energy spread

Anne Schütz | Simulation of Particle Fluxes at the DESY II Test Beam Facility | 20 January 2015 | Page 21

- Geant4 simulation of the DESY test beam generation
 - gdml geometry description of all components of the test beam lines
- > Better understanding of beam composition
 - Synchrotron radiation and neutron flux reduced due to shielding
 - Pure e⁺/e⁻ beam behind test beam magnet and kink
- Plots of test beam energy and energy spread
 - Better understanding of dependency between particle momentum and current through test beam magnet
 - \rightarrow Improvement of the test beam operation for users

Thank you for your attention! Dankeschön!

Backup

Simulating an homogeneous magnetic field

- Magnetic field over an length of 100cm
- > Particle deflection:

Karlsruher Institut für Technologie

$r[m] \approx \frac{E[GeV]}{0.3 \cdot B[T]}$
theta[Radians] = $\frac{1}{2} \arcsin\left(\frac{d \cdot 0.3B[T]}{E[GeV]}\right)$

Angular distribution of particles with charge |e| and an energy of 1GeV in a magnetic field with B = 0.5T

