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• For my thesis, I worked on test beam characterization of
ATLAS 3D pixels

• Analysis of the performance of ATLAS 3D pixels

• Straight line track reconstruction and alignment

• Development of new methods for improving reconstruction
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Test beam reconstruction

• Reconstruction of test beam data consists of several steps.

• This talk will focus on the final red arrow, going from
measurements to a mathematical description of particle
tracks.

• Some theoretical background for track fitting will be given.
Mainly discuss algorithms based on the Kalman filter, not
GBL. Straight lines, not B-field. A lot of it still applies.

• I will also discuss alignment and estimation of material and
resolutions.



Track fitting

Goal
Get best possible estimate of particle positions and angles in
device under test planes

• Least squares estimation of parameters

• Straight lines through air, scatter in planes

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

20µm

80cm
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Track fitting

• Standard deviation calculated from Highland formula, from
thickness of plane and energy of the particle.

• Assumed to be Gaussian, but in fact it is not. Not a problem
at high energies, but the tails that extend further than for a
Gaussian might be a problem at lower energies.
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• Residuals are the difference between model prediction and
the measurement.

• Uncertainties are available for the prediction and the
measurement.

• Pred and meas uncertainties are used to estimate the
uncertainties in the residuals.
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• Measurements are generally one or two dimesional.

• Predictions are four or five dimensional

• Uncertainties are described by covariance matrices.

• The matrix H projects from prediction parameter space to
measurement space.
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Ordinary least square estimator

• Residuals are the vertical distance between red line and blue
dots.

• OLS minimizes the sum of squared residuals.



Gauss-Markov assumptions

The ordinary least squares estimator is the optimal linear
estimator if

• Measurements are unbiased.

• The uncertainties of all the measurements are the same.

• The measurement errors are uncorrelated.
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Gauss-Markov assumptions

• Optimal means unbiased, minimum variance estimator.
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• Particle tracks are broken lines, and the uncertainties of the
residuals grow with distance from reference plane due to
multiple scattering.

• Blue error bars are measurement uncertainties, red error bars
are residual uncertainties.

• In this case OLS does not give good estimates at all.

• A χ2 fit uses information about residual uncertainties, not
only measurement uncertainties.

• Can easily deal with measurements with different
uncertainties.



Gauss-Markov assumptions revised

χ2-minimization is the optimal linear estimator if

• Measurements are unbiased.

• The uncertainties of all residuals are correctly estimated.

• The measurement errors are uncorrelated.
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Gauss-Markov assumptions revised

• Unbiased: Alignment must be right. The measurements must
be where you think they are.

• Residual uncertainties: One must know the amount of
scattering that occurs, and the resolution of the
measurements accurately.
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11/43

Test statistics

20
15

-0
1-

18

DESY-2015

• Test statistics are used to study how well the data fits with
the model.

• A test of implementation, track model, and system
description.
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χ2 minimization

• Track fitting is χ2 minimization, minimization of the sum of
squared normalized residuals.

• If the GM-assumtions hold, and the residuals are Gaussian,
the fitted χ2 should follow a χ2 distribution.

• ndof = number of measurements (× 2) - the number of
fitted parameters.
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Test statistics (simulation)

• p-values are the integral of the true χ2 distribution from the
observed χ2 to +∞.

• If the data is truly χ2 distributed, the p-values should follow
a uniform distribution. Easier to see deviations from model
with this visualization.

• Large deviations from the true χ2-distribution can indicate
problems with the track fits, and suboptimal performance.

• Non-Gaussian residual uncertainties will also make the fits
deviate from true χ2, but are not necessarily a problem.
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Pull-distributions (simulation)

• Pull distributions are simply the normalized residual
distributions in the different planes.

• A good tool for looking for problems with specific detector
planes.



Track fitting with the Kalman filter

• Recursive formulation of χ2-minimization.

• Fast compared to global χ2 minimization.
• Can be used to build other algorithms for:

• Track finding
• Outlier rejection
• Dealing with non-Gaussian energy loss.
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Track fitting with the Kalman filter

• Mathematics of the Kalman filter are discussed many places.

• Instead of going into much mathematical detail, I will go
through a KF track fit, looking at the evolution of the track
estimates.
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• Here we see the measurement as a two dimensional
probability distribution in measurement space/a detector
plane.
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• A more interesting way of viewing the measurement in
parameter space, x vs dx/dz , position versus angle.

• The measurement has no information about the angle of the
track, the variance in the angle direction is ∞.
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• The first step in the Kalman filter is to copy the information
of the measurement in the first plane.
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• The next step is to make a prediction in the second plane.

• The resulting prediction has ∞ uncertainties in both angle
and position

• BUT, it has information about the correlation between the
two.

• If the angle points in the positive direction, the measurement
will be to the right compared to the first measurement, and
vice versa,
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• The measurement is then combined with the measurement in
the plane
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• Leading to a measurement with a finite covariance matrix.
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• A closer look at propagation:
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• First the estimate is propagated to the back of the plane.

• Scattering can occur. Uncertainties in angle increase.

• Uncertainties in position does not increase (if plane is thin.)



Front side of next plane
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• Straight line propagation through air.

• Angle uncertainties are the same

• Due to initial uncertainty in angle, the uncertainty in position
will increase.

• The longer the propagation length, the larger the position
uncertainties will be.
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• In the third plane, prediction has finite covariance matrix,
measurement does not.
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• Combining the measurement in the plane with the prediction
looks similar to this in every following plane.

• The maths in the bottom shows the actual algorithm,
combining information from the prediction and the
measurement.
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• The Kalman filter estimate is only optimal when all
measurements are included, meaning in the last
measurement plane.

• To obtain optimal estimate for a plane in the middle of the
detector system , information from a Kalman filter running in
the forward direction is combined with information from a
KF running in the BW direction.
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• The result, called the smoothed prediction, contain
information from all measurements, except in the current
plane.

• The maths shown here are equivalent to the algorithm
combining a prediction with an update.

• This is simply the linear algebra equivalent of a weighted
average, where the weights are the inverted covariance
matrices.



Track finding
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• KF expects a set of meauremets, one or zero per plane, to be
fitted.

• Real data contains noise hits, hits belonging to other tracks,
detection inefficiencies.

• Identifying sets of measurements created by the same
particle is called track finding, and is pattern recognition.
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• Graph theory can be used to describe the problem of track
finding. It can be seen as a directed acyclic graph.

• Nodes are measurement, in the example two per plane.

• All nodes are connected to all other nodes corresponding to
measurements further downstream with an edge (a line).

• A path is a set of connected edges. Any such path can be a
track.

• In the graph, the horizontal position is z , vertical position is
not connected to position, but a measurement index.
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• The graph hides the complexity of the problem.

• Here you see all >400 paths containing 4, 5 or 6
measurements.

• If there was 10 measurements per plane, there would be
approx 1M such paths.



A node in the first plane is chosen as a starting point
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• The combinatorial Kalman filter is a depth-first search for
paths in this graph that look like tracks.

• The search starts in a node in the first plane, and is
performed by following edges.

• Following an edge means a KF prediction.



Discarding an edge excludes sub-graph
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• Excluding an edge from the search excludes an entire
subgraoh, greatly reducing complexity.



Initial edges are followed based on angle cuts
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• Short edges are followed first.

• The first edges to be followed are excluded or included based
on the angle between the nodes it connects.
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• With 2 nodes, χ2 increment are used. Obtained by KF
updates.
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• Edges are only followed if all shorter edges have been
excluded.
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When the path can no longer grow, it is rejected or accepted
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If accepted, the track is stored for analysis
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• Before track is accepted, it must pass a global χ2 cut in
addition to the χ2 increment cut.

• If the cut in χ2 increment is equal to the global cut, every
good candidate will be found.

• A more aggressive cut in χ2 increment can speed the search
up greatly, though.



If rejected, edges skipping more planes are considered
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Searches are started in all nodes that can lead to a track
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• There can be several tracks per event, search cannot stop
after finding a single good one.

• No point in starting searches in planes where the paths
cannot become long enough.



Deterministic annealing filter

T = 25
T = 8
T = 1

χ2
DAF

0 10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0 T = 25
T = 8
T = 1

χ2
DAFχ2

m

0 10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

25/43

Deterministic annealing filter

T = 25
T = 8
T = 1

χ2
DAF

0 10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0 T = 25
T = 8
T = 1

χ2
DAFχ2

m

0 10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

20
15

-0
1-

18

DESY-2015

Deterministic annealing filter

• Weakness of CKF: only information from forward running KF
available when deciding on including measurement

• The DAF is an algorithm that can improve a track candidate
from CKF or any other track finder.

• Uses smoothed predictions, meaning all available
information, when deciding on including a measurement.

• The DAF considers all the measurements in all the planes by
assigning weights to them.

• DAF can include measurements that were excluded by the
track finder, and exclude measurements included by the track
finder. Not just an outlier rejection.
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Toy simulation

• Simulation with 6 planes, 120GeV pions, 95% detection
efficiency, resolution of 4.3µm.

• Only tracks with more than 4 measurements are included.

• Binomial probability of having 4 or more hits is 99.8%.

• Dashed line is CKF: near perfect, if properly configured.

• Colored lines are CKF followed by DAF with different
configurations: Near perfect if properly configured

• Noise distributed in a 0.5cm× 0.5cm area. A noise density of
20 here, means 80 noise hits per cm2. MUCH higher than
what I have seen in data.
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Toy simulation

• Precision is defined as a normalized determinant of the
empirical covariance matrix.

• DAF beats CKF alone in precision with high noise densities.

• CKF + DAF has near perfect track finding efficiency with
near perfect precision.

• Each point on each line is the result of simulating, track
finding and fitting of 1M tracks. Takes a few minutes to
generate. The methods are quite fast.
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• A simpler to understand and implement technique for track
finding.
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• All measurements are propagated into the first plane by the
nominal beam angle.

• Track finding is a simple cluster finder.

• This approach was used for APIX test beam data.

• Works well when combined with DAF and with low noise
densities.

• Not as good or as fast as CKF+DAF, though.
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P-values, simulated data

• These are the same chi2 values I showed earlier.



P-values, real data
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P-values, real data

0 10 20 30 40 50
0

50

100

150

200

250

300

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.8

0.9

1.0

1.1

1.2

20
15

-0
1-

18

DESY-2015

P-values, real data

• Before the tracker detector is properly configured, test
statistics can look more like this.

• Several parameters are needed to describe the tracking
detector: Alignment, resolution, material.

• Especially in a test beam experiment, these parameters are
hard to know exactly a priori.



Detector alignment

• Obtaining a geometry description of the detector system

• Measurements during mounting not enough.

• The sum of independent random numbers following
χ2-distributions is also a χ2 distribution

χ2(ndoftot = ntrack × ndof ) =
ntrack∑

χ2(ndof )
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Detector alignment

• Resolution of the EUDET telescope is a few µm. Hard to get
this kind of precision from measurements during mounting.

• Numerical methods for alignment are needed.

• The geometry of the planes are described by three
translations, and three rotations.

• With a very collimated beam, like in CERN NA, there is very
little sensitivity for translations in the z-direction.

• There are some advantages to using scale factors instead of
real rotations in terms of numerical stability and simplicity. If
sensors are very large, and rotated so that propagation
differences become significant, real rotations would be better.



Track sample χ2 as a function of alignment parameters
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• χ2 as a function of alignment parameters of a plane.

• Red color means high χ2, blue means low.

• If geometry of all other planes are correct, the minimum χ2

is at the true position of the plane.
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• If one of the other planes were moved out og their position,
the position and value of the minimum in this plot would
change.

• It is not possible to first align one plane, then the next. Both
planes must be movable at the same time to find the true
minimum.

• With 9 detector planes and 5 alignment parameters per
plane, this is a search for a minimum in a 45 dimensional
parameter space.

• Not all these parameters can be free in the search! If all
parameters are free, the global coordinate system can
potentially become deformed.
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• Multidimensional minimization is generally very slow.

• With a very fast track fitter, it is possible to do alignment
with iterative searches available from f.eks GSL or root
Minuit. Still slow, an hour or so for 1M tracks.

• Luckily there exists a program called Millepede, that can
solve alignment problems without iteration. Very fast.



Mechanical stability
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Mechanical stability

• With a tracking resolution of a few µm, mechanical stability
of the setup becomes very important.

• For high resolution studies it can be a good idea to figure
out data ranges where the setup is stable.



P-values, real data, after alignment
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P-values, real data, after alignment
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P-values, real data, after alignment

• Much better, but not perfect.



Material distribution and resolutions

• Affect uncertainties of measurements, predictions and
updates

• Not known at time of data taking

• Estimation from data is new!
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Material distribution and resolutions



Average χ2 as a function of thickness and resolution
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• No minimum in chi2 around true parameter values.

• Residuals divided by infinite uncertainties → 0.

• Infinitely large resolutions and thicknesses minimize χ2.
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• Estimation of material and resolution can be done with
multidimensional minimization.

• The trick is finding a weight function with a minimum at the
true parameter values.

• Several such weigh functions were tested (paper: Gjersdal,
Frühwirth, Nadler, Strandlie).



SDR3 as a function of thickness and resolution
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• Finding such a minimum requires a fast track fitter, as
general mulidimensional minimizers are needed. (No
millepede).

• Refitting a track sample when track finding is solved is an
embarassingly parallel task.

• A simple test beam geometry can easily fit in GPU memory,
and one can then fit thousands of tracks in parallel. Possible
to solve the problem in seconds in the straight line case.



Third Gauss-Markov assumption
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Third Gauss-Markov assumption

• If measurement errors are large compared to telescope
resolution, and to a large degree determined by the position
of the particle within the cell, errors can be correlated
between measurement planes.

• The example is here showing correlations between residual
errors in two neighboring APIX planes.

• In this case, including the APIX planes in the track fit
decreases the precision of the track fitter in the long pixel
direction.



P-values, real data, material and
resolution estimated
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P-values, real data, material and
resolution estimated
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P-values, real data, material and
resolution estimated

• After alignment and mat/res estimation, near perfect
recreation of the true χ2 distribution.

• Despite correlated errors and non Gaussian APIX response.

• Correct test statistics indicates that: Track fits are optimal,
track finder/outlier rejector have optimal running conditions,
estimated track uncertainties are correct.



Detection efficiency
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Detection efficiency



Electron beams

Track χ2 from simulated tracks
Probability density function of χ2
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Electron beams

• Electrons lose energy mainly through Bremsstrahlung.

• This is a highly non-Gaussian process, where the electrons
can lose a large fraction of its energy in a single interaction.

• Electron data fitted with standard KF not truly
χ2-distributed.

• Specialized electron track fitters based on KF: Gaussian Sum
Filter (GSF) and Dynamic Noise Adjustment (DNA).

• The weight function presented here for material and
resolution estimation will not work on electrons. Should be
possible to come up with an electron track weight function.



Summary

More detail:
Straight line track reconstruction for the ATLAS IBL testbeam with the

EUDET telescope. Gjersdal, Røhne, Strandlie. ATL-INDET-PUB-2014-003.

Optimizing track reconstruction by simultaneous estimation of material
and resolutions. Gjersdal, Frühwirth, Nadler, Strandlie. JINST, 8, 2013.

Test beam track reconstruction and analysis of ATLAS 3D pixel
detectors. Håvard Gjersdal. PhD thesis, UiO, 2014.

Code:
https://github.com/hgjersdal/eigen-track-fitter

Thanks for listening!
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