Telescope and Timepix DUT simulation with Allpix/Geant4

Niloufar Alipour Tehrani (CERN & ETH Zürich)

3rd Beam Telescope and Testbeams Workshop 2015 DESY, Hamburg 20 January 2015

Niloufar Alipour Tehrani (CERN-ETHZ)

- Introduction
- R&D on sensor for CLIC
- Testbeam setup for thin assemblies
- GEANT4 simulations and digitisation
- Conclusions

CLIC vertex detector requirements

- Efficient tagging of heavy quarks:
 - Multi-layer VXD: 3 double layers in barrel and endcap regions (31 mm inner radius).
 - Single point resolution: $\sim 3 \,\mu m \Rightarrow$ achievable with 25 $\mu m \times 25 \,\mu m$ pixel pitch.
 - Low material budget: $< 0.2\% X_0$ for each detection layer \Rightarrow goal: 50 µm sensor on 50 µm ASIC.
- Thin-sensor R&D:
 - Characterisation of thin sensor assemblies during testbeam campaigns at DESY.
- Goal:
 - Simulate the testbeam setup.
 - Extrapolate results for small pitch pixels.
 - Improve digitisation models for full detector simulation.

- The ultimate goal for CLIC:
 - low material budget and small pitch: 50 μm sensor on 50 μm ASIC with 25 μm pixel pitch.
- Thin-sensor R&D:
 - Timepix chips (55 µm pixel pitch) are used to study the feasibility of thin sensors.
 - use simulations to extrapolate to pixels with a pitch of 25 μm.

DESY testbeam setup

- Assemblies tested during the testbeam campaign at DESY in 2013-2014:
 - 50 µm-300 µm sensor thicknesses.
 - 100 µm-750 µm Timepix chip thickness.
- DESY II beam: 1-6 GeV electron.
- The EUDET telescope is used to reconstruct the tracks and extrapolate them on the device under test (DUT).
- The telescope contains 6 planes of Mimosa26 pixel sensors with a tracking resolution of \sim 3 µm at 5.6 GeV.
- The DUT is placed between layer 3 and 4 of the telescope with the possibility of rotation.

AllPix simulation framework

- AllPix:
 - A general purpose pixel detector simulation framework.
 - Written in C/C++, based on $\operatorname{GEANT4}$.
 - https://twiki.cern.ch/twiki/bin/view/ Main/AllPix

- Inputs:
 - Pixel detector geometry: i.e. number of pixels, thickness, pitch, bump geometry and material.
 - Test structure: i.e. support and cabling.
 - Simulation scenario: i.e. nature of particles, geometric and energy distribution, number of trials.
- Output:
 - Raw data: text files containing the pixels hit and the energy deposited.
 - ROOT files: containing the MC truth data.
 - Possibility to convert the raw data into LCIO format and use the EUTelescope software chain.

- AllPix provides:
 - World construction and positioning of the pixels and detectors.
 - GEANT4 simulation of the passing of particles in sensitive volumes and the energy deposited by ionisation.
- Digitisers (defined by the users) simulate:
 - The response of the silicon sensor to ionisation.
 - The readout chip.
- Existing digitisers:
 - Monte-Carlo truth digitiser
 - MIMOSA26 digitiser
 - Based on testbeam data.
 - Timepix digitiser
 - Based on semiconductor physics \Rightarrow simulation of charge transport and diffusion in electric field.
 - The calibration for each assembly is used to simulate the Timepix response.

EUTelescope simulation in AllPix: cluster size distribution

- Simulation of the telescope (without DUT).
- The digitiser for the telescope sensors (Mimosa26) takes into account the crosstalk between the pixels (based on data).
- Cluster-size distribution:

EUTelescope simulation in AllPix: tracking resolution

• The simulation and the data have very similar tracking resolution after the tuning of the simulation.

DUT simulation

- Semiconductor physics simulated by theoretical models for drift and diffusion.
- The electronic noise: ${\sim}100~e^-$ rms.
- Timepix chip simulated by the calibration of each assembly which allows to convert the energy (given by GEANT4) to Time Over Threshold (TOT).
- Pixel-by-pixel calibration using monoenergetic radiation ⇒ TOT surrogate function:

• Non-linear response of pixels in the energy range close to the threshold.

Resistivity of the sensors

- Bias voltage affects collected charge ⇒ use bias scan to determine the depletion voltage.
- Determine the resistivity ρ :

$$depletion = \frac{d^2}{2 \cdot \epsilon \cdot \mu \cdot \rho}$$

• For 200 $\mu{\rm m}$ sensor: $V_{depl}=\sim\!30\,{\rm V}$ and thus $\rho=\!\sim\!5\,{\rm k}\Omega\,{\rm cm}$

• Theoretical values for $\sigma_{diffusion}$ for low and high resistivity and bias voltages:

DUT Simulation: cluster size distribution

- Assembly characteristics:
 - 200 μm planar silicon sensor (assembly B06-W0125).
 - Sensor type: n-in-p.
 - Bias voltage: −35 V.
 - Threshold: 3.54 keV (~960 electrons).
 - 5.2 GeV *e*⁻ beam.
 - Sensor resistivity used for the simulations: $\rho = 5 \text{ k}\Omega \text{ cm}.$

• Good agreement between data and simulation of the cluster-size distribution.

DUT Simulation (2): track position

- 200 μ m sensor, V_{bias} =-35 V
- The telescope is also simulated and the tracks are found using the EUTelescope reconstruction software.
- The simulation shows a better tracking resolution.
- More investigation needed.

DUT Simulation (3): increase in bias voltage

- 200 μ m sensor and $V_{bias} = -70$ V.
- Less agreement between data and simulation for the higher bias voltage.
- More investigation needed.

DUT Simulation (4): TOT distribution for $200 \,\mu m$

- The simulation shows a lower TOT peak than the data. The low energy part shows a poor agreement with the data.
- How well GEANT4 describes the energy loss in thin silicon? What about the TOT calibration?
- For $V_{bias} = -35 \text{ V}$

Landau distribution in simulation

- 200 μ m sensor and $V_{bias} = -35$ V
- Energy distribution of 1-hit clusters:
 - The MC truth energy, shows the same MPV (most probable value) and high energy tail as the data but the low energy part is not well described. ⇒ more investigation is needed on the data quality and also calibration.
 - The charge diffusion, tends to shift the distribution to lower energy values.

DUT Simulation: MC track position

• MC track position within the pixels:

• In data, the track resolution is $\sim 3 \,\mu m$ \Rightarrow Smear the MC track position with a gaussian.

DUT Simulation: MC track position smeared with a gaussian

• MC track position smeared with a gaussian distribution with σ =5 µm.

Niloufar Alipour Tehrani (CERN-ETHZ)

- Challenging demands on thin-sensor assemblies.
- AllPix simulation framework is a flexible tools for pixel detector simulations and provides an interface to EUTelescope.
- Validation of GEANT4 simulation models with testbeam results is ongoing.
 - The DUT needs a better understanding to disentangle different parameters.

Backup slides

Niloufar Alipour Tehrani (CERN-ETHZ)

Threshold scan in simulation

- By varying the threshold in the simulation the cluster size is more affected than the energy distribution for 1 and 2-hit clusters.
- 200 µm sensor
- n-in-p
- -35 V bias voltage
- 1-hit clusters

2-hit clusters

DUT Simulation for 100 µm sensors

- 100 µm sensor
- p-in-n
- 35 V bias voltage

DUT Simulation for 200 μm sensors

