#### 3<sup>rd</sup> Beam telescopes and Testbeams Workshop 2015

## **TCAD** simulations

## for silicon sensors and testbeams



#### PARIS DIDEROT Marco Bomben – UPD & LPNHE (Paris)



#### Outline

- Introduction
- Presentation of some of the packages
- Selected results
- Comments and conclusions



# INTRODUCTION

#### Introduction

- Technology Computer Aided Design TCAD
- Solve drift/diffusion & Poisson equations for electrons and holes:

$$J_{n} = qn\mu_{n}E + qD_{n}\frac{\partial n}{\partial x} \quad J_{p} = qn\mu_{p}E - qD_{p}\frac{\partial p}{\partial x} \qquad \qquad \frac{\partial n}{\partial t} = \frac{1}{q}\frac{\partial J_{n}}{\partial x} + G_{n} - R_{n}$$
$$\frac{\partial^{2}\psi}{\partial x^{2}} = -\frac{q}{\epsilon_{Si}\epsilon_{0}}(N_{D} + p(x) - n(x) - N_{A}) \qquad \qquad \frac{\partial p}{\partial t} = -\frac{1}{q}\frac{\partial J_{p}}{\partial x} + G_{p} - R_{p}$$

- taking into account boundary conditions
   Electrodes' potentials, interface charges, etc
- on a grid of points

#### Normal work flow for a HEP silicon sensors



#### TCAD simulation work flow



### So why bother with simulations?

• You repeat all the "steps" of real sensors...

### So why bother with simulations?

- You repeat all the "steps" of real sensors...
- It is not true!

#### Possible work flow for real sensors



#### TCAD simulation work flow



### TCAD simulation work flow



- Simulating sensors helps in saving:
- Development time
- > Number of submissions
- ➢ Money
- You can learn a lot in terms of:
  Physics
  - Study quantities otherwise not accessible!

# **SOFTWARE FEATURES**

#### **TCAD** packages & work flow



#### A Deckbuild session

| Deckbuild V3.42.2.R - dlodeex03.in, dir; /home/mbomben/work/T                                                                                                                        | Deckbuild: Examples                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File $\overline{v}$ View $\overline{v}$ Edit $\overline{v}$ Find $\overline{v}$ Main Control $\overline{v}$ Commands                                                                 | (Index v) (Section v) (Sub-section v) (Load exempte)                                                                                                                                              |
| go atlas<br>TITLE PN Diode Breakdown Simulation with curve tracing algorithm<br># SILVACO International 1996                                                                         | Index                                                                                                                                                                                             |
| mesh<br>x.m 1=0.0 spac=1.0<br>x.m 1=1.0 spac=1.0<br>y.m 1=0 spac=1.0<br>y.m 1=5.0 spac=0.005<br>y.m 1=15 spac=2                                                                      | 1 MOS1 : MOS Application Examples       LOTS OT EXAMPLES         2 MOS2 : Advanced MOS Application Examples         3 BJT : BJT Application Examples         4 DIODE : Diode Application Examples |
| region num=1 silicon<br>electrode top name=emitter<br>electrode bottom name=base<br>doping uniform conc=5e17 p.type<br>doping uniform n.type conc=1.e20 x.l=0. x.r=1 y.t=0.0 y.b=5.0 | 5 SOI : SOI Application Examples<br>6 EPROM : EPROM Application Examples<br>7 LATCHUP : CMOS Latchup Application Examples                                                                         |
| save outf=diodeex03_0.str<br>#tonyplot diodeex03_0.str -set diodeex03_0.set<br>models srh conmob bgn auger fldmob<br>impact crowell                                                  | 8 ESD : ESD Application Examples<br>9 POWER : Power Device Application Examples                                                                                                                   |
| <mark>solve init</mark><br>solve<br>solve vemitter=0.1                                                                                                                               | 10 HIGHK : High-k Gate Dielectric Application Examples<br>11 ISOLATION : Isolation Applications Examples                                                                                          |
| next     line     stop     r     cont     run     quit       paste     init     pause     clear     restart     kill       ATLAS> solve init                                         | 13 HBT : HBT Application Examples<br>14 HEMT : HEMT Application Examples                                                                                                                          |
| Solve init<br>Obtaining static solution:                                                                                                                                             | 15 GANFET : GANFET Application Examples                                                                                                                                                           |
| init psi psi<br>direct x rhs<br>i j m -5.00* -26.0*                                                                                                                                  |                                                                                                                                                                                                   |
| Executing line 27                                                                                                                                                                    | ATLAS                                                                                                                                                                                             |

## Athena: semiconductor processing simulation



### **ATLAS: device simulation**

- ATLAS provides general capabilities for physically-based two (2D) and threedimensional (3D) simulation of semiconductor devices.
- Typical simulation
   program structure →

| Group                                | Statements                                 |
|--------------------------------------|--------------------------------------------|
| 1. Structure Specification           | MESH<br>REGION<br>ELECTRODE<br>DOPING      |
| 2. Material Models Specification ——— | MATERIAL<br>MODELS<br>CONTACT<br>INTERFACE |
| 3. Numerical Method Selection        | METHOD                                     |
| 4. Solution Specification            | LOG<br>SOLVE<br>LOAD<br>SAVE               |
| 5. Results Analysis                  | EXTRACT<br>TONYPLOT                        |

#### **ATLAS:** main features

- TONS of models:
  - S-Pisces:
     Silicon Based 2D
     Simulator
  - 3D Device
     Simulator
  - Luminous:
     Optoelectronic
     Simulator
  - Single Event Upset
  - ...
- LOT of options
- HUGE manual

#### 1 / 1519 1 / 1519 1 121% 1 121% 1 121% 1 121% 1 121% 1 121% 1 121% 1 121% 1 121%



## **ATLAS User's Manual**

**DEVICE SIMULATION SOFTWARE** 

#### ATLAS: an example



## **Tonyplot: plotting results**



### Tonyplot

#### Mesh structure



# **SELECTED RESULTS**

#### A concrete example: Active Edge sensors



#### A concrete example: Active Edge sensors



#### IV on test structures



BD Voltage: Agreement within 20% or better

## Silicon microscopic damage effects



Influence of defects on the material and device properties



Panja Luukka, The Fifth International Forum on Advanced Material Science and Technology (IFAMST5 2006)

#### **Radiation damage effects**

• Implement radiation damage effects via traps in the forbidden gap  $N = \eta \times \phi$ 

| Type | Energy (eV)   | $\sigma_e({ m cm}^2)$ | $\sigma_h({ m cm}^2)$  | $\eta({\rm cm}^{-1})$ |
|------|---------------|-----------------------|------------------------|-----------------------|
| А    | $E_{C}$ -0.42 | $9.5 	imes 10^{-15}$  | $9.5\times10^{-14}$    | 1.613                 |
| А    | $E_{C}$ -0.46 | $5.0 	imes 10^{-15}$  | $5.0 	imes 10^{-14}$   | 0.9                   |
| D    | $E_V + 0.36$  | $3.23 	imes 10^{-13}$ | $3.23 \times 10^{-14}$ | 0.9                   |



"Simulations of radiation-damaged 3D detectors for the Super-LHC", D. Pennicard et al., Nucl. Instrum. and Meth. A 592 (2008) 16-25

#### Data vs TCAD simulations



### Charge collection efficiency with MIP

 We can profit of SEU module to study the drift of charge released along a track



In the following: results for n-on-p diodes

#### Response to a MIP

Expected Initial current ~  $\lambda$  (<v<sub>e</sub>>+<v<sub>h</sub>>) = 3.9x10<sup>-7</sup> A



### P-bulk: irradiation models

Petasecca p-bulk"Numerical Simulation of Radiation Damage Effects in p-<br/>Type and n-Type FZ Silicon Detectors,"<br/>Petasecca, M. et al, Nuclear Science, IEEE Transactions on ,<br/>vol.53, no.5, pp.2971-2976, Oct. 2006,

| Туре     | Energy (eV) | Defect    | $\sigma_e(\mathrm{cm}^2)$ | $\sigma_h(\mathrm{cm}^2)$ | $\eta(\rm cm^{-1})$ |
|----------|-------------|-----------|---------------------------|---------------------------|---------------------|
| Acceptor | $E_C$ -0.42 | VV        | $2.0 \times 10^{-15}$     | $2.0 \times 10^{-14}$     | 1.613               |
| Acceptor | $E_C$ -0.46 | VVV       | $5.0 \times 10^{-15}$     | $5.0\times10^{-14}$       | 0.9                 |
| Donor    | $E_V$ +0.36 | $C_i O_i$ | $2.5 \times 10^{-14}$     | $2.5 \times 10^{-15}$     | 0.9                 |

Pennicard p-bulk

"Simulations of radiation-damaged 3D detectors for the Super-LHC",

D. Pennicard et al., Nucl. Instrum. and Meth. A 592 (2008) 16-25

| Туре     | Energy (eV) | Defect    | $\sigma_e(\mathrm{cm}^2)$ | $\sigma_h(\mathrm{cm}^2)$ | $\eta(\mathrm{cm}^{-1})$ |
|----------|-------------|-----------|---------------------------|---------------------------|--------------------------|
| Acceptor | $E_C$ -0.42 | VV        | $9.5 \times 10^{-15}$     | $9.5 \times 10^{-14}$     | 1.613                    |
| Acceptor | $E_C$ -0.46 | VVV       | $5.0 \times 10^{-15}$     | $5.0 \times 10^{-14}$     | 0.9                      |
| Donor    | $E_V$ +0.36 | $C_i O_i$ | $3.23 \times 10^{-13}$    | $3.23 \times 10^{-14}$    | 0.9                      |

### CCE studies for n-on-p sensors – MPP group



#### Irradiation facilities:

- JSI:  $E \leq 10$  MeV reactor neutrons
- KIT: 25 MeV protons
- LANSCE: 800 MeV protons

S Terzo *et al* 2014 *JINST* **9** C12029

25th RD50 Workshop 19 - 21 November 2014 at CERN

B. Paschen (MPP München)

Characterization of thin n-in-p planar pixel sensors









CCE of 200  $\mu m$  sensors:

- $7 \times 10^{15} n_{eq}/cm^2 \rightarrow (45 \pm 6) \%$ •  $14 \times 10^{15} n_{eq}/cm^2 \rightarrow (35 \pm 5) \%$
- LANSCE: 800 MeV protons



- None of the model gives a reasonble prediction for the CCE
- Need to develop a better model

?Annealing effect?

?Non uniform irradiation effects?

These questions can be addressed using simulations

#### Extract electric field from TCAD sims & tb data



Fig. 2

THE GRAZING ANGLE TECHNIQUE FOR DETERMINING CHARGE COLLECTION PROFILES. THE CLUSTER LENGTH IS PROPORTIONAL TO THE DEPTH OVER WHICH CHARGE IS COLLECTED.

Study of Charge Collection as a function of charge deposition depth
Parameterization of the Electric Filed in simulations

Comparison data/simulation



 $6 imes 10^{14}$  Neq/cm<sup>2</sup>. The BF simulation is shown as the solid histogram in each plot.

#### **Electric field distribution**

Similar predictions from the 2 models



#### Charge collection profile



M. Bomben & I. Rubinskyi - 25th RD50 workshop - CERN, 19-21/11/2014

#### N-on-n pixels – Electric field profile comparison



#### N-on-n pixels – Charge profile



# **COMMENTS AND CONCLUSIONS**

#### Conclusions

- TCAD is a very powerful tool for HEP silicon sensors
- You can reduce the number of submission, and so cutting time and money to get results
- Combining TCAD simulations and testbeam data can probe fundamental quantities like electric field distribution, trapping, etc.
- A solid knowledge of semiconductor physics, and good data inputs are recommended to fully exploit TCAD simulations

#### One last remark

 If you are interested in working with TCAD simulations, feel free to contact me: <u>marco.bomben@cern.ch</u>



# **BACKUP MATERIAL**

#### Devedit: device structure editor



#### Intermezzo: TCAD inputs

 To get reliable predictions you need precise inputs; *e.a.* doping profiles via SIMS



M. Bomben & I. Rubinskyi - 25th RD50 workshop - CERN, 19-21/11/2014

#### **Before strike**

#### **Electrons**



#### 30 ps after particle hit

#### **Electrons**



## 80 ps after particle hit

#### **Electrons**



#### 780 ps after particle hit

#### **Electrons**



#### 4 ns after particle hit

#### **Electrons**



#### 100 ns after particle hit

#### **Electrons**



### Digitizer inputs from TCAD: ramo potential



#### Simulation of CCE studies with laser



#### Non uniform irradiation at LANSCE



#### Simulated structure



M. Bomben & I. Rubinskyi - 25th RD50 workshop - CERN, 19-21/11/2014

### Collected charge vs track entry point



M. Bomben & I. Rubinskyi - 25th RD50 workshop - CERN, 19-21/11/2014

### Scanning the bulk depth



M. Bomben & I. Rubinskyi - 25th RD50 workshop - CERN, 19-21/11/2014

### Scanning the bulk depth



M. Bomben & I. Rubinskyi - 25th RD50 workshop - CERN, 19-21/11/2014

## Ionizing particles and carrier distributions



#### • Carrier distribution during the particle strike

## Ionizing particles and carrier distributions



#### • Carrier distribution 1 s after the particle strike

### TCAD simulations: time needed

- The CPU time increases with number of meshing points
- Some analysis are not parallelized (*e.g.* AC)
- E.g. : 1 minute per bias point for ~ 100k nodes mesh on a 8 core 3GHz machine
- For irradiated sensors this translates into ~ 1 week to get full depletion
- Another example: time-domain solution. For the same structure above you need to solve for ~ 10 ns in time steps of ps, with ~ 1 minute per point → 1 week needed

### Reminder: N-bulk irradiation models

|                                              | Petase                                             | cca moc                                          | lel for                                            | N-type                                   |                                                    | V. Eremin, E. Ve<br>of double peak<br>field distributio<br>detectors," Nuc | erbitskaya, and Z. Li, <b>"The origin</b><br>e <b>electric</b><br>on in heavily irradiated silicon<br>cl. Instrum. |  |  |
|----------------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| Level                                        | Ass.                                               | σ <sub>n,p</sub> (cm <sup>2</sup> )<br>Exp.[2,9] | $\sigma_n$<br>(cm <sup>2</sup> )                   | σ <sub>p</sub><br>(cm <sup>2</sup> )     | η<br>(cm <sup>-1</sup> )                           | Methods Phys.<br>2002.                                                     | Methods Phys. Res. A, vol. A476, pp. 556– <b>564,</b><br><b>2002.</b>                                              |  |  |
| Ec-0.42eV                                    | VV <sup>(-/0)</sup>                                | 2x10 <sup>-15</sup>                              | 2x10 <sup>-15</sup>                                | 1.2x10 <sup>-14</sup>                    | 13                                                 |                                                                            |                                                                                                                    |  |  |
| Ec-0.50eV                                    | VVO(?)                                             | 5x10 <sup>-15</sup>                              | 5x10 <sup>-15</sup>                                | 3.5x10 <sup>-14</sup>                    | 0.08                                               |                                                                            | Plus: fluence                                                                                                      |  |  |
| Ev+0.36eV                                    | C <sub>i</sub> O <sub>i</sub>                      | 2.5x10 <sup>-15</sup>                            | 2x10 <sup>-18</sup>                                | 2.5x10 <sup>-15</sup>                    | 1.1                                                |                                                                            | dependent carrier                                                                                                  |  |  |
|                                              | EVL                                                | . model <sup>.</sup>                             | for N-t                                            | уре                                      |                                                    |                                                                            | lifetime                                                                                                           |  |  |
| Trap                                         | E (eV)                                             | $g_{ m int}$                                     | $(cm^{-1})$                                        | $\sigma_e$ (cm                           | $\sigma_h$ (                                       | $(cm^2)$                                                                   |                                                                                                                    |  |  |
| Donor<br>Acceptor                            | $E_V + 0.$<br>$E_C - 0.5$                          | 48<br>525                                        | 6<br>3.7                                           | $1 \times 10^{-1}$<br>$1 \times 10^{-1}$ | $15 1 \times 1$<br>$15 1 \times 1$<br>$1 \times 1$ | $0^{-15}$<br>$0^{-15}$                                                     | Same levels as EVL                                                                                                 |  |  |
|                                              | Chioc                                              | hia mod                                          | el for N                                           | l-type                                   | _                                                  |                                                                            |                                                                                                                    |  |  |
| $\Phi (n_{eq}/cm^2)$<br>(×10 <sup>14</sup> ) | $N_{\rm A}({\rm cm}^{-3})$<br>(×10 <sup>15</sup> ) | i<br>(                                           | $V_{\rm D}({\rm cm}^{-3})$<br>(×10 <sup>15</sup> ) | $\sigma_{\rm e}^{\rm A/D}$ (×10          | $(cm^2)^{-15})$                                    | $\sigma_{\rm h}^{\rm A}({\rm cm}^2)$ $(\times 10^{-15})$                   | $(cm^2) \sigma_h^D$<br>(×10 <sup>-15</sup> )                                                                       |  |  |
| 0.5<br>2<br>5.9                              | 0.19<br>0.68<br>1.60                               | 2                                                | 0.25<br>1.0<br>4.0                                 | 6.60<br>6.60<br>6.60                     |                                                    | 1.65<br>1.65<br>1.65                                                       | 6.60<br>6.60<br>1.65                                                                                               |  |  |