Telescope geometry optimisation

3rd Beam Telescopes and Test Beams Workshop 2015

January 20th, 2013

Mathieu Benoit^{*)}, <u>Dominik Dannheim</u>, Szymon Kulis (CERN)

*) Now at Université de Genève

Example: sub-optimal telescope setup

- Almost arbitrary plane spacing, DUT placement constrained by translation table
- What is the prediction resolution at the DUT? How can we optimise the geometry?

Testbeam WS 20. Jan. 2015

Telescope geometry optimization

Telescope resolution estimates

•Measured residuals in DUT are convolution of telescope and DUT resolutions: $\sigma_{meas}^2 = \sigma_{pred,DUT}^2 + \sigma_{DUT}^2^2$

 Track-segments fit taking into account hits in telescope planes + multiple scattering:
 → global analytical chi2 minimisation, based on EUDET-Report-2007-01 (similar to EUTelTestFitter in EUTelescope) contributions to chi2 from single-point resolution (σ_i=σ_t) and scattering ΔΘ_i

$$\Delta \chi_i^2 = \left. \left(\frac{y_i - p_i}{\sigma_i} \right)^2 \right|_{i \neq i_{DUT}} + \left. \left(\frac{\Theta_i - \Theta_{i-1}}{\Delta \Theta_i} \right)^2 \right|_{i \neq 1, N}$$

→ multiple scattering $\Delta \Theta_i$ according to PDG2011 + correction for air btw. planes → use ROOT script for inversion of 13x13 matrix (once for a given setup) → gives estimate of telescope prediction resolution at DUT ($\sigma_{pred, DUT}$)

Testbeam WS 20. Jan. 2015

Telescope geometry optimization

Spacing between telescope layers

DUT should be placed as close as possible to innermost telescope layers $(\Delta z_{DUT} \text{ small})$

Optimal spacing between telescope layers (Δz_{arms}) is compromise between multiple scattering (better for smaller spacing) and lever arm (better for larger spacing)

Optimised telescope resolution

DATURA telescope DUT prediction resolution

Optimal spacing depends on p_{beam}

- Optimal spacing between telescope planes to minimise resolution
 - at DESY, CERN-PS: largest possible spacing
 - at CERN-SPS: shortest possible spacing

Web tool

- JavaScript web tool to calculate prediction resolution as function of geometry, material, p_{beam}
- Calculations based on same code as results on previous slides
- Allows for easy and fast optimisation of geometry and extraction of telescope prediction resolution for a given parameter set
- Tested for several platforms and browsers
- User feedback very welcome!

http://cern.ch/kulis/telescope

Telescope geometry optimization

Summary / Outlook

Developed code to extract telescope prediction resolution based on global chi2-minimisation method (EUDET-Report-2007-01)
Used for optimisation of telescope spacing for various test beam campaigns
→ Significant improvement of telescope performance
Web tool available

•To do:

•Further validation with unbiased residuals for the telescope planes (comparison with data and with Geant4 simulations)

- •Take into account feedback from users of the web tool
- •Document method and results in a note