

Trigger and Synchronization for Beam Tests

High Rate Synchronous as well as Asynchronous

1 20/1/2015

Introduction 1/2

- Two sorts of beam telescope
 - Homogeneous all one technology and readout.
 - Not considered here
 - In-homogeneous Telescope of one technology, hosting a "device under test" (DUT)
 - EUDET/AIDA/etc. Beam telescope offered as a service.

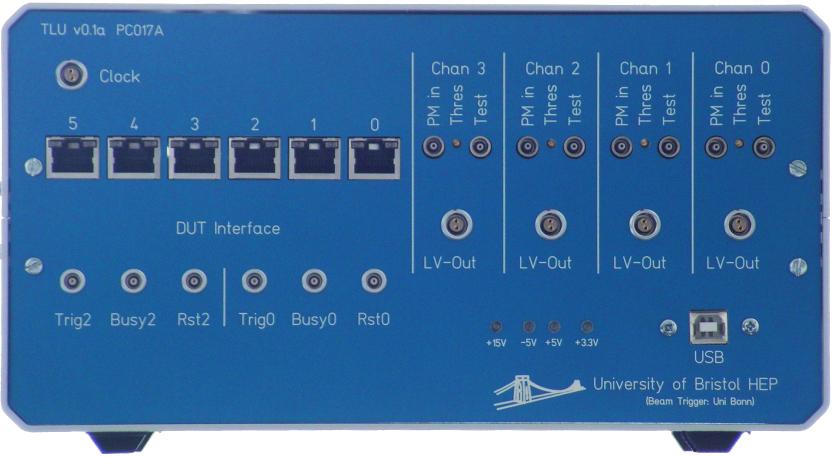
Introduction 2/2

- For in-homogeneous telescopes (operating with a DUT) need to correlate data from telescope and DUT.
- Different detector have different integration/sensitive times. E.g.
 - $\hfill\square$ Continuously active (e.g. MAPS , TimePix)
 - Triggered (data only stored on receipt of trigger, e.g.
 LHC detectors)
- Different ways of sychronization
 - ^I Triggers.

^I Shared clock.

TLU Versions - EUDET

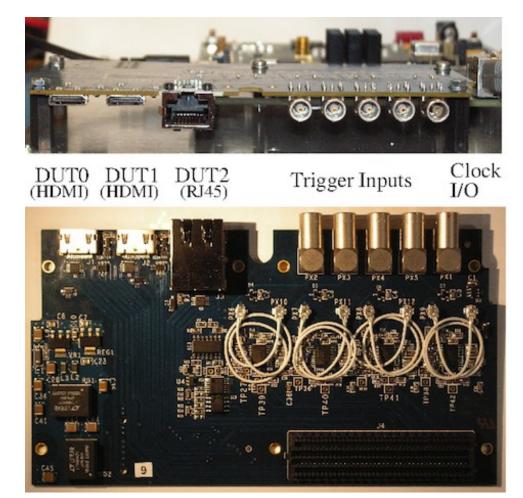
• EUDET


- Uses COTs FPGA board with custom daughterboards (FPGA almost obsolete)
- Asynchronous TLU and DUT clocks. Triggering modes:
 - Trigger/Busy handshake
 - ¹ Trigger only
- Documentation at

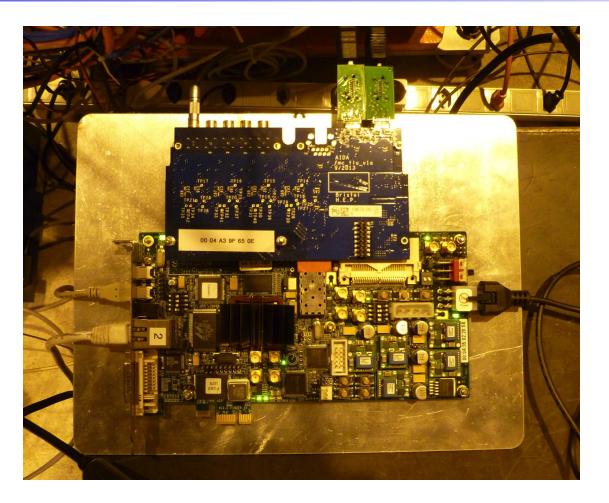
http://www.eudet.org/e26/e28/e42441/e572 98/EUDET-MEMO-2009-04.pdf

TLU Versions - EUDET

TLU Versions - AIDA


- Allows synchronous (shared clocks) interface.
 —Allows higher trigger rate than trigger/busy handshake.
- Interface by Gigabit Ethernet.
 - -Readout PC can be remote.
 - -IPBus protocol (https://svnweb.cern.ch/trac/cactus/wiki)
- High rate discriminators (> 10 MHz count rate)
 - -Threshold and constant-fraction
 - -Thresholds remotely controllable.
- Timestamps on each scintillator input
 - -Timestamp granularity 800ps (c.f. 3.2ns on EUDET
 - 6 20/1/2015

AIDA TLU - Hardware


- Implemented as doublewidth "FPGA Mezzanine Card" (VITA 57)
- Uses low-cost FPGA development board as carrier (currently SP601, SP605)
- Three interfaces for DUT (2x HDMI , 1x RJ45)
- Four trigger inputs (threshold + CFD)
- One clock I/O

Hardware

- Currently only as boards bolted to plate
- Design for box in progress

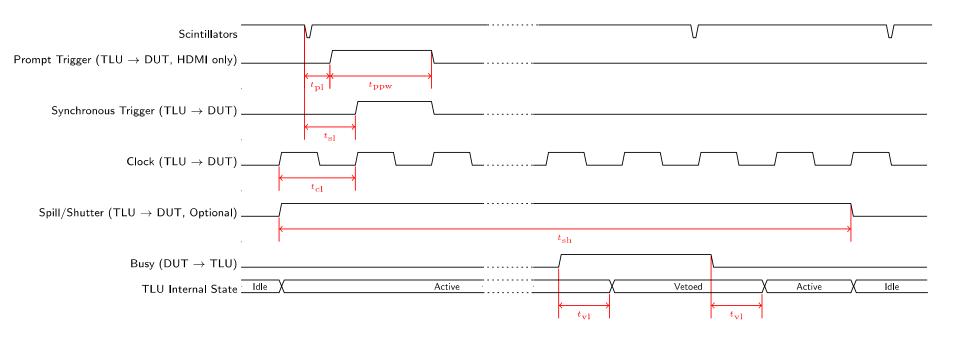
David Cussans, AIDA WP9.3, DESY

Hardware

- LVDS --> TTL converters exist.
- This example from NIKHEF

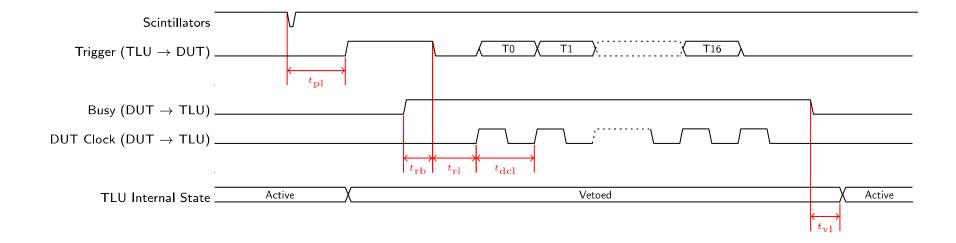
AIDA TLU Documentation

- <u>http://www.ohwr.org/projects/fmc-mtlu/wiki</u>
 - -Describes hardware, firmware, firmware-simulation
 - -PCB layout in Cadence Allegro (CERN libraries)
 - -Firmware uses Xilinx ISE , needs Gigabit Ethernet Core if using 1000Base-T interface.
- Data format from TLU described at <u>http://svn.ohwr.org/fmc-</u> <u>mtlu/trunk/documents/firmware/latex/AIDA_T</u> <u>LU_note.pdf</u>


Synchronous Interface

- Clock from TLU to DUT
 - -Configurable frequency
- Trigger pulse only only clock cycle long —Trigger rate up to 40MHz (though photo-multipliers will limit this)
- Busy from DUT to TLU
- Check synchronization from time-stamp of each trigger (measured in clock cycles)

Synchronous Interface



Asynchronous Interface

- EUDET style asynchronous interface
 - ^I TLU sends trigger
 - DUT responds with busy
 - Optional read-out of trigger number by DUT
 - Maximum DUT_Clock frequency
 EUDET ~ 1MHz (depends on firmware)
 - ^I AIDA ~ 20MHz
- Implemented in both EUDET and AIDA TLUs

Spill/Shutter signal

- Optional , programmable spill/shutter signal
- In short term will be a fixed on/off period
- Could extend to be on for a fixed number of triggers, or a fixed time, or whichever comes first.
- Useful for a number of Linear Collider detectors / readout system.

Large Number of Devices

- AIDA mini-TLU has only three DUT interfaces
- Fan-out one interface with external hardware —Take "or" of BUSY signals
- Options:
 - -1:6 using Uni Mainz board, VME format
 - -1:30 using Uni Bristol board. Mother+daughterboards, custom format
- Allows AIDA mini-TLU to interface to e.g. TimePix telescope (8 sensors)
- Fan-out can also operate stand-alone.

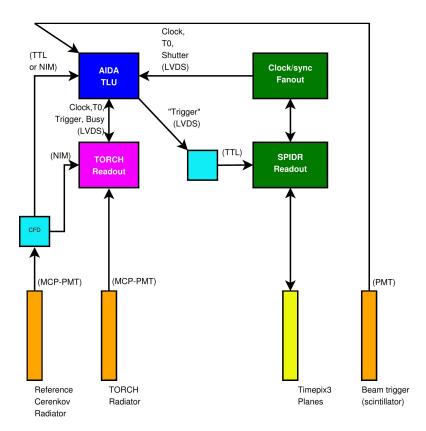
AIDA TLU - Some Practical Issues

- The IP address is 192.168.200.(16*D) where
 - "D" is the value set by the DIP switches.
 - -Change by re-building firmware.
 - –IPBus allows setting IP address by RARP, but not (yet) implemented in mini-TLU firmware.
- If using 1000Base-T ("Copper") Ethernet, the link **must** negotiate to 1GBit/s (with current firmware).

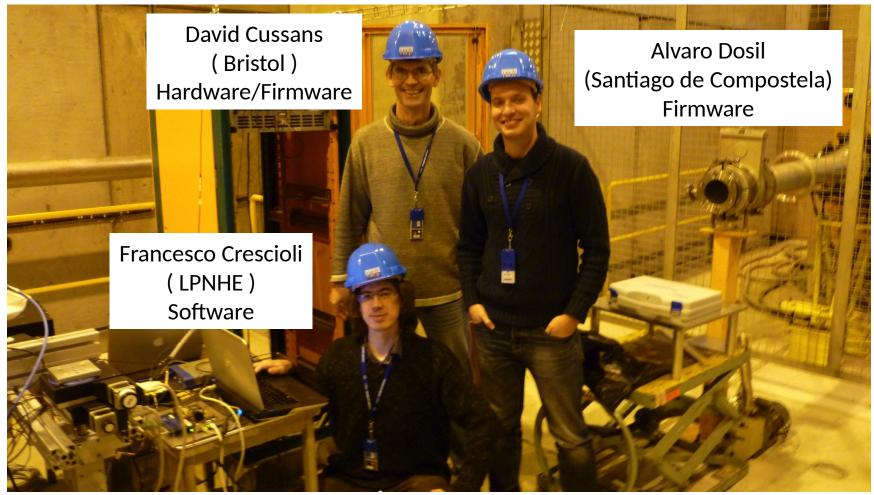
AIDA TLU Hardware Status

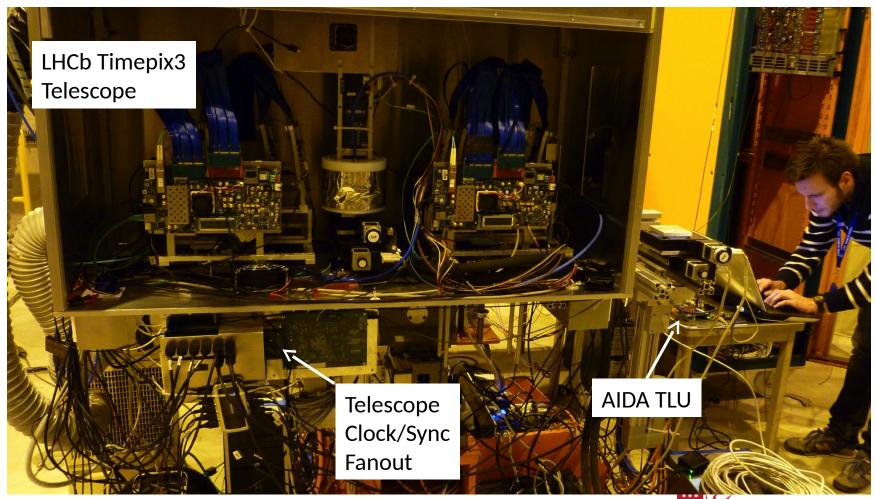
- Serious "bug" delayed production.
- Three prototypes with corrected design have been produced.
- Seven more boards produced
 - -Not all available instantly need testing.
 - -Contact DESY for availability.
 - -Cost likely to be about €1500 (TBC)
- Custom enclosure under design.

AIDA TLU Firmware/Software Status

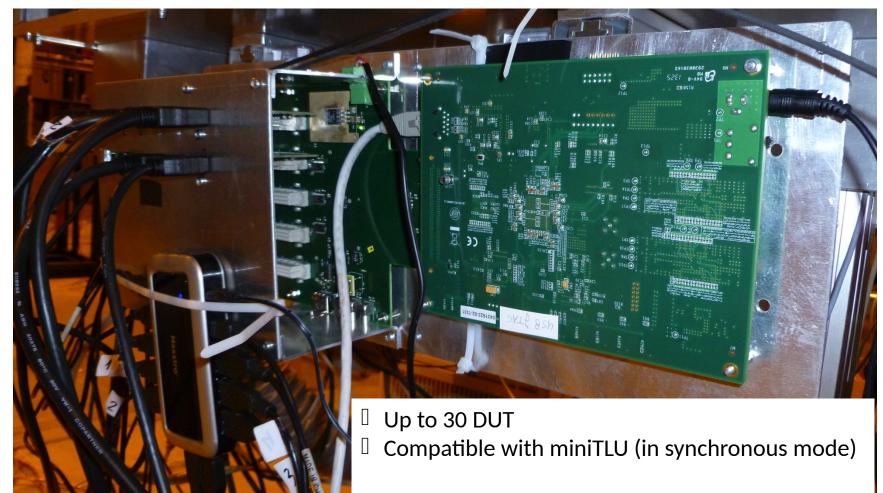

- Prototype EUDAQ Producer for AIDA TLU written by Francesco Crescioli, LPNHE/IN2P3
- Prototype firmware written by Alvaro Dosil, USC and D.Cussans, Bristol.
- Only synchronous mode at the moment, asynchronous mode later this year.

TLU in action


- Operation with non-AIDA telescope:
- Interfacing TORCH (LHCb upgrade proposal) DAQ with LHCb TimePix3 telescope.
- Accepts clock and synchronization signals from LHCb telescope
 - Provides "AIDA synchronous interface" to DUT


Development Team

David Cussans, AIDA WP9.3, DESY



David Cussans, AIDA WP9.3, DESY

University of BRISTOL

Clock/Syncronization Fanout

Plans

- AIDA-2020 funded.
 - Common DAQ work package will integrate closely with beam test infrastructure work package maintaining EUDAQ
- Current firmware/software team available until end March 2105
 - ¹ Aim to have "finished" AIDA TLU code by then.
- New version of AIDA TLU version this year.
 I Funding model to be decided.
- EUDET TLU in maintenance mode

