

Reconstruction, analysis and simulation of the FEI4 telescope SPS data with IBL Planar module and CCPD assemblies

Francesco Armando Di Bello master student

Co-authors: Mathieu Benoit, Sergio Gonzalez Sevilla, Javier Bilbao de Mendizabal

20/01/2015

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

1/22

- 2 The offline framework
- 3 DUT analysis

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

Overview of the latest (November) test-beam at SPS

- more than 6 billion triggers.
- more than 1000 runs.
- 5 main samples to be analyzed (work in progress...).
 - CCPDv2: C19, C22,G1
 - **CCPDv4**: 402, 404 \rightarrow 4 pixel types.
- contributions from:
 - U. of Geneva (2 M.a., 1 Phd, 1 Master student), U. of Bern (1 Post-doc, 1 Phd)
 - ord LL of Concurs (1 Dhd)
 - and U. of Genova (1 Phd).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

The FEI4 Telescope

- Developed by the U. of Geneva, see B. Ristic's talk.
- 6 reference telescope planes: IBL planar FE-I4 modules 50 \times 250 μm pixel size.
- Trigger was given by the coincidence of plane 0 and 5.
- Region of interest defined.
- \blacksquare resolution at DUT \sim 10 $\mu m.$

PR Plots for ROI

The Device Under Test

- High-Voltage CMOS (HV-CMOS) technology as a pixel particle detector:
- The entire CMOS pixel electronics are placed inside the deep n-well that acts at the same time as the signal-collecting electrode → "smart diode".
- CCPD: Capacitive Coupled Pixel Detectors.
- Lower cost, lower mass, lower operating voltage, smaller pitch.
- details here: High-voltage pixel sensors for ATLAS upgrade I. Perić et al. Nuclear Instruments and Methods in Physics Research.A 765(2014) 172-176

3

The Device Under Test

version 2: C19 (unirr.), C22 (1*10¹⁵ n_{eq}/cm²)

HV2FEI4

- pixel size: 125 μm x 33 μm
- 60 columns x 24 rows

FEI4 readout chip

イロト イポト イヨト イヨト 一日

- pixel size: 250 μm x 50 μm
- 80 columns x 336 rows

Overview

Judith has been developed by Garrin McGoldrick, Matevž Červ, Andrej Gorišek . Nuclear Instruments and Methods in Physics Research.A 765(2014) 140-145

- Event reconstruction
 - clustering algorithm
 - track reconstruction algorithm
- Correct the positions and orientations of all sensor planes.
 - coarse alignment
 - fine alignment

DUT analysis

Judith Overview

- Judith is written in C++ and provides an intuitive object based event model
- The Judith data is stored as a ROOT n-tuple where each event corresponds to a trigger
- Input parameter and main cuts are defined in config. files

Clustering algorithm

- recursive search for neighbouring hits.
- legend:
 - green: unclustered hit
 - purple: seed for neighbour search
 - orange: found neighbour
 - red: hit belonging to the cluster
- Digital charge sharing. Center of the cluster is taken.

3

Tracking algorithm

- The tracking algorithm chooses a seed cluster in the first plane.
- The seed then searches up to 2 planes further for a cluster within a certain "beam spot".
- The track can bifurcate if more than one cluster is found. The best is then chosen (minimize χ^2).

3

The alignment procedure

- Coarse alignment: Computes the offset using cluster difference between sensors
- Residuals are defined as the difference between the cluster position of a plane and the position extrapolated from the track in that plane.
- Fine alignment: Iterative process based on unbiased (excluding the hit of that plane in the track fit) residuals it estimates: rotZ, offX, offY

What is the minimum angle we can correct for? Studying with simulations.

Residuals shape

peaks separated by 50 μm in the transverse plane;
pixel length(x)= 250 μm vs length_{transverse}(x) = 50 μm -> 5 pixels "granularity"

Residuals using Allpix

- developed by Mathieu Benoit and John Idarraga
- https://twiki.cern.ch/twiki/bin/view/Main/AllPix

э

Residuals shape using simulations

• Only the energy loss from M.C. simulations is taken into account.

Simulations confirm 5 peaks divided by 50 μm .

(日) (四) (三) (三) (三) (0) (0)

Alignment study

- Simulations have been used also to study the alignment.
- A rotation around z for the third plane has been implemented in simulations keeping the other planes perfectly aligned.

Alignment study

But is some cases (simulation)...

 Understanding this behavior is complicated. Comparison with EUDET (Millepede) would help a lot!

Validation plot

・ロト・四ト・日・・日・ つくぐ

DUT analysis

Quality cuts on tracks:

• the track must have a cluster in each reference planes.

• the track must have $\chi^2/n.d.f < 5$

Extrapolate the track position to the silicon DUT plane

 Match between the track and the cluster position in the DUT (ellipse to accommodate the rectangular shape of the pixel)

Some results: Residuals IBL Planar sensor

Start observing the peaks in the long pixel direction (X).Gaussian shape in the short pixel direction (Y).

イロト 不得 とくほと くほとう ほ

Some results: Planar IBL sensor

• $\epsilon = 99\%$. This give us confidence about the validity of the reconstruction.

Some results: C22 efficiency

- Previous results at PS: CCPDv2 C19 (unirradiated) $\rightarrow \epsilon \approx 96\%$
- CCPDv2: irradiated $(1*10^{15}n_{eq}/cm^2)$
- $V_{bias} = 80$ V, $\epsilon = 95\%$ for "standard" pixels

DUT Plane0 Efficiency Map

Conclusion and further plans

- Availability of the software for the reconstruction of the FEI4 telescope .
- Data results and simulation results give us confidence about the validity of the reconstruction.
- The comparison with results obtained using Judith and EUDET will give us further confidence.
- Work in progress analyzing this promising technology.

Backup

Summary of the Judith reconstruction

- Alignment (coarse + fine) \sim 20 m (1 M triggers), 10 iterations
- Process reference planes \sim 1.4 m (1 M)
- \blacksquare Process the DUT \sim 30 s (1 M)
- Efficiency studies \sim 30 s (1 M)

Fast and friendly framework.