Alignment of the CMS Tracking Detector 3rd Beam Telescopes and Test Beams Workshop, DESY, Hamburg

Matthias Schröder (DESY)

January 19, 2015

Motivation

Precise Tracking is Key to CMS Physics Performance

Physics performance depends crucially on precise tracker alignment

What Alignment Precision is Needed?

• Track $p_{\rm T}$ resolution

with $C_1 \propto rac{\sigma_{\rm meas}}{B \cdot L^2 \cdot \sqrt{N}}$

- Effective position resolution
 - $\sigma_{\rm meas} \propto \sigma_{\rm hit} \oplus \sigma_{\rm align}$
- Intrinsic hit-position resolution
 - $\sigma_{\rm hit} \approx 9 \ \mu {\rm m}$ (pixel)
 - $\sigma_{\rm hit} \approx 20-60 \ \mu {
 m m} \ {
 m (strip)}$

design tracker $p_{\rm T}$ -resolution of single- μ

Need to keep $\sigma_{\text{align}} \ll \sigma_{\text{hit}}$

Outline

- Track-Based Alignment
- 2 Alignment Challenge at CMS
 - CMS Tracking Detector
 - Global-Fit Approach with MILLEPEDE-II

3 Alignment Accuracy

- 4 Advanced Corrections
 - Sensor Shape Parameters
 - Lorentz-Angle Calibration

5 Sensitivity to Systematic Distortions

6 Summary & Outlook

Difference between real and assumed geometry affects track measurement

• **Idea:** residuals *r* between measured and predicted hit positions to detect mis-alignments of modules

Difference between real and assumed geometry affects track measurement

• **Idea:** residuals *r* between measured and predicted hit positions to detect mis-alignments of modules

Difference between real and assumed geometry affects track measurement

• **Idea:** residuals *r* between measured and predicted hit positions to detect mis-alignments of modules

Difference between real and assumed geometry affects track measurement

- Idea: residuals *r* between measured and predicted hit positions to detect mis-alignments of modules
- Cannot simply move module by -r
 - Change of position (alignment) parameter
 - Change of track parameters
 - Change of other residuals
- → Tracks correlate alignment parameters
- ightarrow Use many tracks

Simultaneous fit of alignment $+\ track$ parameters for many tracks

Global-Fit Approach to Tracker Alignment

 $\bullet\,$ Minimise χ^2 computed from track-hit residuals of many tracks

$$\chi^{2}(\mathbf{p},\mathbf{q}) = \sum_{i}^{\text{tracks hits}} \sum_{j}^{\text{hits}} \left(\frac{m_{ij} - f_{ij}(\mathbf{p},\mathbf{q}_{j})}{\sigma_{ij}}\right)^{2}$$

with

- measured hit positions m_{ij} and
- predicted positions f_{ij}(**p**, **q**_j)

assumed geometry

reconstructed track

• *Simultaneous* fit of all alignment parameters **p** and track parameters **q**_i takes into account all correlations

CMS Tracking Detector

- 1 440 silicon pixel modules
 - 3D hit-position measurements
- 15 148 silicon strip modules (24 244 sensors)
 - Generally 2D measurements (r\u03c6 direction)
 - \blacktriangleright In some layers: additional modules rotated by 100 $\mu {\rm rad}$

- At CMS
 - Up to 6 parameters per sensor $\leftrightarrow x y z$ shift along axis
 - \circlearrowleft $\alpha \beta \gamma$ *tilt* around axis

- At CMS
 - ► Up to 9 parameters per sensor \leftrightarrow x y z shift along axis \bigcirc α β γ tilt around axis
 - $\sim w_0 w_1 w_2$ surface distortion

- At CMS
 - Up to 9 parameters per sensor
 ↔ x y z shift along axis
 ∴ α β γ tilt around axis
 ∴ w₀w₁w₂ surface distortion
 Additional parameters for Lorentz angle corrections

- At CMS
 - ► Up to 9 parameters per sensor \leftrightarrow x y z shift along axis \bigcirc α β γ tilt around axis \sim $w_0w_1w_2$ surface distortion

 Additional parameters for Lorentz angle corrections

- $N_{
 m alignment \ pars} = N_{
 m sensors} \cdot N_{
 m dof} pprox 2 \cdot 10^5$
- Typical fit requires $\mathcal{O}(10^6)$ tracks with ≥ 5 parameters

Alignment of CMS tracker: least squares fit with $\mathcal{O}(10^7)$ parameters

Global-Fit with MILLEPEDE-II¹

- Local linearisation of track model and minimisation requiring $d\chi^2(a)/da = 0$
 - System of linear equations
 Ca = b with a^T = (Δp, Δq)
- Track parameters **q** in part of data only
 - Block structure in C
- Only interested in alignment parameters **p**
 - Problem can be reduced to $\mathbf{C}' \mathbf{\Delta} \mathbf{p} = \mathbf{b}'$
 - Solution provides alignment parameters
 - All correlations still taken into account
- $\bullet~\mathbf{C}',~\mathbf{b}'$ by solving $\textit{N}_{track~pars}$ \times $\textit{N}_{track~pars}$ matrix per track
- Dramatic cost reduction

$$N_{
m align\ pars}^2 + N_{
m tracks} \cdot N_{
m track\ pars}^2 \ll (N_{
m align\ pars} + N_{
m tracks} \cdot N_{
m track\ pars})^2$$

 $\blacktriangleright\,$ Full-scale alignment performed within $\lesssim 24\,$ h

¹ V. Blobel, Software alignment for tracking detectors, Nucl. Instrum. Meth. A566 (2006) 5-13, doi:10.1016/j.nima.2006.05.157

Alignment Accuracy

Studied with distribution of medians of residuals (DMR) per module

— Observed RMS in data: 0.4-2 μ m (pixel detector)

- - Well described by expectations from simulation
- ···· Close to ideal conditions, i. e. at limit of DMR precision

Far better than performance specifications

Alignment of Sensor Deformations

• Fit 3 additional parameters describing sensor curvature

Correction of Deformations Improves Cosmic- μ Tracking

 $\rightarrow\,$ increasing sensitivity to deviation from flat sensor

Improved $(\operatorname{Prob}(\chi^2, \operatorname{ndof}))$ at large d_0 for curved-sensor model

Lorentz-Angle Calibration

 Charge drift in B field affects measured hit position

$$\Delta x = rac{d}{2} an(heta_{\mathsf{LA}})$$

- Knowledge of Lorentz angle θ_{LA} essential for position resolution
- Determination of θ_{LA} incorporated in alignment fit
 - Sensitivity by simultaneous fit to field-off and field-on data
- $\theta_{\rm LA}$ depends among others on irradiation dose
 - Expect significant time dependence in particular in pixel tracker

Lorentz-Angle Calibration

- Time dependence of θ_{LA} correction for each ring of barrel pixel detector
 - Offset between R1-4 and R5-8 due to different bias voltages
- Decrease with integrated luminosity (=irradiation)
 - Strongest for innermost rings
- $\theta_{\rm LA}$ calibration equivalent to module shift of pprox 4 $\mu{\rm m}$

Few $\,\mu{\rm m}$ effect, but relevant for upcoming LHC run

• Likelihood insensitive ($\Delta\chi^2\approx 0)$ to certain global distortions

• However, potential bias of track parameters

• Example: tracks are straight lines in rz

• Likelihood insensitive ($\Delta \chi^2 \approx 0$) to certain global distortions • However, potential bias of track parameters

- Example: tracks are straight lines in rz
- "telescope" distortion $\Delta z \propto r$
 - Track is still straight line
 - \rightarrow bias in η

- Likelihood insensitive ($\Delta\chi^2pprox$ 0) to certain global distortions
- However, potential bias of track parameters

- Example: tracks are straight lines in rz
- "telescope" distortion $\Delta z \propto r$
 - Track is still straight line
 - ightarrow bias in η
- Solution: adding cosmic-µ tracks

- Likelihood insensitive ($\Delta\chi^2 pprox$ 0) to certain global distortions
- However, potential bias of track parameters

- Example: tracks are straight lines in rz
- "telescope" distortion $\Delta z \propto r$
 - Track is still straight line
 - \rightarrow bias in η
- *Solution:* adding cosmic-µ tracks
 - Telescope mis-alignment leads to kink
 - ightarrow not allowed in track model

• Reconstructed Z mass in $Z \rightarrow \mu\mu$ decays depends on $\eta(\mu)$

• Solution: Z-mass information in alignment fit (or field-off cosmic μ)

Weak modes controlled by combining different event topologies

Summary

- Precise alignment of the CMS tracker achieved by track-hit residual minimisation
- Requires simultaneous determination of $\approx 200\,000$ parameters
- \bullet Possible with global-fit approach of $\operatorname{MillePEDE-II}$
 - Takes into account all correlations
 - Sensitivity to subtle effects such as surface deformation and Lorentz angle
 - Combination of tracks from different event topologies crucial
- Local precision of < 10 μm achieved in most regions
- Has become routine operation in CMS

A new LHC-run at $\sqrt{s} = 13$ TeV Lies Ahead...

- Precise tracker alignment essential to perform high-precision measurements and exploit full LHC physics-potential
- Powerful and well-understood alignment procedure in place

Additional Material

More Information

- CMS Collaboration, "Alignment of the CMS tracker with LHC and cosmic ray data", *JINST* 9 (2014) P06009, doi:10.1088/1748-0221/9/06/P06009
- V. Blobel, "Software alignment for tracking detectors", Nucl. Instrum. Meth. A566 (2006) 5-13, doi:10.1016/j.nima.2006.05.157
- V. Blobel, C. Kleinwort, and F. Meier, "Fast Alignment of a Complex Tracking Detector using Advanced Track Models", *Comp. Phys. Com.* 182 (2010) 1760, doi:10.1016/j.cpc.2011.03.017
- C. Kleinwort, "General Broken Lines as Advanced Track Fitting Mehtod", Nucl. Instrum. Meth. A673 (2012) 107, doi:10.1016/j.nima.2012.01.024, https: //www.wiki.terascale.de/index.php/GeneralBrokenLines

Strip Modules

Example: Number of Events in Full-Scale Alignment

data type	N(events)
0 T collisions	320000
0 T cosmics	857970
CRAFT cosmics	1073931
interfill cosmics	1946573
interfill cosmics (peak mode)	1770243
isolated μ	14788959
minimum bias	1952099
$Z o \mu \mu$	2419834