

Shower Simulation

DESY ATLAS Meeting

Wolfgang Ehrenfeld, Sasha Glazov

DESY - Hamburg

25. August 2006

- Calorimeter
- Fast Simulation
- Timing
- Cluster Reconstruciton
- Moments

- the full Geant4 based ATLAS detector simulation is too slow
 - $\textbf{\rightarrow}~\mathrm{Z} \rightarrow \mathrm{e^+e^-}\text{:}$ 15 min
 - \rightarrow H \rightarrow ZZ: 35 min
 - → main time is spent in calorimeters
- parametrisation of electron showers as a first step
 - → handles high energy photons as well
 - → maybe other particles as well
- parametrisation done by Anthony Waught and Elisabetta Barberio
 - → EMB, EMEC, FCAL
- things to do (for us)
 - → get started with software
 - → validation (concentrate on reconstruction level)
 - → optimisation
 - → better parametrisation

ATLAS Calorimeters

- Layout of the ATLAS Calorimeters
- EM LAr-Pb accordion calorimeter
 - Barrel (EMB): $|\eta| < 1.4$
 - End-cap (EMEC):
 1.375 < |η| < 3.2
- Hadron calorimeters
 - Barrel (Tile): Scint.-Steel $|\eta| < 1.7$
 - End-cap (HEC): LAr-Cu $1.5 < |\eta| < 3.2$

Forward calorimeter (FCal) $3.2 < |\eta| < 4.9$

- FCal1: LAr-Cu
- FCal2&3: LAr-W

Using FastSimModel class from G4FastSimulation for implementing fast simulation in full G4 simulation

- test energy of particle
 - $\rightarrow 0.0 < E < 0.1 \, \text{GeV}$: kill electrons and photons (buggy)
 - $\rightarrow 0.1 < E < 0.5 \, \text{GeV}$: full simulation (e, γ)
 - $\rightarrow 0.5 < E < 100 \, \text{GeV}$: full simulation (γ), parametrisation (e)
- test if shower is fully contained in calorimeter
 - → longitudinal Z(95%), radial R(95%)
- apply parametrisation:
 - → kill particle
 - → generate fake steps along initial trajectory
 - → parametrised energy deposition including fluctuations

→ longitudinal:
$$\frac{1}{E} \frac{dE(t)}{dt}$$

→ radial: $\frac{1}{E(t)} \frac{dE(t,r)}{dr}$

• Following hep-ex/0001020:

"The Parameterized simulation of electromagnetic showers in homogeneous and sampling calorimeters." G. Grindhammer, S. Peters (1993)

• Use full simulation to derive parametrisations for given functional form:

$$\rightarrow < \frac{1}{E} \frac{dE(t)}{dt} > = \frac{(\beta t)^{\alpha - 1} \beta \exp{-\beta t}}{\Gamma(\alpha)}$$

t: longitudinal shower depth α : shape parameters β : scaling prameter

$$\rightarrow < \frac{1}{E(t)} \frac{dE(t,r)}{dr} > = p \frac{2rR_C^2}{(r^2 + R_c^2)^2} + (1-p) \frac{2rR_T^2}{(r^2 + R_T^2)^2}$$

r: shower radius $R_C(t)$: median of energy distribution of the shower core $R_T(t)$: median of energy distribution of the shower tail *p*: weighting

- using AtlasOffline 12.0.2 with LArG4FastSimulation package
 - → Calo only (DetFlags.Calo_setOn())
 - \rightarrow full simulation
 - → fast simulation (LArG4FastSimulation-00-00-18)
 - → fast simulation bugfix (LArG4FastSimulation-00-00-21)
 - → fast simulation bugfix (set GEneToKill to 0)
- single electron, fixed position and energy
 - → energy: 100 GeV
 - \rightarrow position: in front of LAr / center of detector
- looking at reconstruction level
- looking at cluster quantities (energy, moments, ...)

our bug fix: set GEneToKill to 0 instead of 0.1 (0.1 is in official 12.0.1 release).

default bug fix: set GEneToKill to 0 and set GFlagToKill to false

Timing comparison for 100 GeV electrons injected at the calorimeter surface or at the center of the detector.

Parameterization (00-00-18), at Calorimeter	$0.32\pm0.01~{ m sec}$
Parameterization (00-00-18), at (0,0)	$3.44\pm0.28~{ m sec}$
Parameterisation (00-00-21), at (0,0)	$2.95\pm0.21~{ m sec}$
Parameterization (00-00-18), at (0,0), full for low energy γ	$9.3\pm0.8~{ m sec}$
Full GEANT, at Calorimeter	$33.10\pm0.10~{ m sec}$
Full GEANT, at (0,0)	$35.96\pm0.14~{ m sec}$

- timing information at reco level from G4SimTimer
- new tag event better than old one
- work on parametrisation decision

Different clustering algorithms:

• sliding window clustering: LArClusterEM, LArClusterEM35, LArClusterEM37, CombinedCluster

- https://twiki.cem.ch/twiki/bin/view /Atlas /Slidi ngWind owClus tering
- \rightarrow precluster in 5x5 window (η, ϕ)
- \rightarrow cone around barycenter of precluster in XxY window (3x5,3x7, 5x5)
- → sampling variables in ESD

• topological clustering: EMTopoCluster, CaloCalTopoCluster

- https://twiki.cem.ch/twiki/bin/view /Atlas /Topol ogical Cluste ring
- → group cells in clusters based on their neighbor relations and on the significance of their energy contents
- → sampling variables in ESD
- → cluster moments in ESD

Cluster Reconstruction: Plots

- CombinedClusters
- full simulation
- fast simulation
- → looks good!
- → maybe some bias in total energy!

Default list of cluster moments are stored on ESD level for combined topo clusters (threshold 420) and EM topo cluster (threshold 630):

https://twiki.cern.ch/twiki/bin/view/At

las/Cl usterM aments

- $\rightarrow \eta$, ϕ
- $\rightarrow \rho$: energy density
- → cluster axis is calculated from the energy weighted spacial correlation
- \rightarrow angular cluster deviation from IP-to-Center (ϕ , θ , α)
- \rightarrow r: radius to shower axis
- $\rightarrow \lambda$: distance from cluster center along cluster axis
- $\rightarrow \lambda_{center}$: distance from front face to cluster center along cluster axis
- \rightarrow first moment in ϕ , η , ρ , x, y, z
- → second moment in r, λ , ρ
- → normalised second lateral and longitudinal moment
- → energy fraction in EM calo, most energetic cell

Cluster Moments Plots I

- EMTopoClusters
- full simulation
- fast simulation
- → looks okay!
- → some differences visible

Cluster Moments Plots II

Cluster Moments Plots III

Cluster Moments Plots IV

- CombinedClusters
- full simulation
- fast simulation
- \rightarrow bias in energy!
- $\rightarrow 2^{nd}$ moment not available in ESD!

- real work is going on!
 - → found bug in energy deposition
- know how to run athena framework at CERN:
 - → simulation, digitization, ESD/AOD, histograms
 - → access to cluster moments
 - → work on sampling variables
 - \rightarrow work on scanning (energy, η , ϕ , particles)
- concentrate on reconstruction level! What is used at later stage?
 - $\rightarrow e/\gamma \text{ or } e \text{ ID}$
 - $\rightarrow e/\pi$ or π^0/γ seperation
- define contribution besides validation
 - → optimisation of parametrisation decision

→ ...